
Chapter 10 Speech Recognition

10.1 Introduction

Speech recognition (SR) by machine, which translates spoken words into text has been a goal of
research for more than six decades. It is also known as automatic speech recognition (ASR), com-
puter speech recognition, or simply speech to text (STT). The research in speech recognition by
machine involves a lot of disciplines, including signal processing, acoustics, pattern recognition,
communication and information theory, linguistics, physiology, computer science and psychology.
Figure 10-1 below shows a general block diagram of a task-oriented speech recognition system:

Word
Recogniton

Model

Higher
Level

Processing

Voice
Signals

Text
Output

Spoken
Words

Dynamic
Knowledge

Representation

Syntax,
Semantics,
Pragmatics

Task
Description

Figure 10-1 A Typical Speech Recognition System

The figure shows a general model for speech recognition, which starts with a speaker generating a
speech to accomplish certain tasks. The speech is parsed into a sequence of words that makes sen-
sible meaning according to the syntax, semantics and pragmatics of the recognition task. A higher
level processor makes analysis of the spoken words and uses a dynamic knowledge representation
to modify the syntax, semantics and pragmatics dynamically. The higher level processor feedback
reduces the complexity of analysis and search.

Speech recognition research has been performed for about six decades. Only in recent years
did it get widespread applications in the consumer products. The research in the field of speech
recognition by machine started in the 1950s in large laboratories such as Bell Laboratories and
RCA Laboratories, when researchers exploit the fundamental principles of how human perceives
acoustic-phonetics. The speech recognition systems relied on spectral measurements. Later, re-
searchers incorporate statistical techniques to improve upon earlier methods. In the 1960s several
fundamental ideas in speech recognition emerged in the US and Japan. Significant milestones
were achieved in 1970s by different groups of researchers in the world. In the 1980s, speech
research shifted from template-based approaches to statistical modeling methods, especially the
hidden Markov model approach. After the 1990s, the research in the field has become mature.
Linguists, computer scientists, and engineers worked together to take advantage of large databases
and the improvement in computing speed to create applications that had commercial usage. In

1

2 Introduction

recent years, mobile phones and desktop computing are inundated with speech recognition appli-
cations.

Nowadays, speech recognition (SR) mobile products are ubiquitous. There are many third party
SR apps that support Android. The well known Google Now project allows a user to give a voice
command to an Android device, which will then fetch the result for the user. It recognizes the
voice and converts it into text or takes appropriate actions. Android’s Translate app goes one step
further. It lets a user dictate e-mails and text messages. It not only converts English into another
spoken language such as French, but also has a conversation mode that will translate the French
receiver’s response back into English.

Some SR apps provide service to another user app through the use of Intent. For example,
Google Voice Search is a Google product that allows users to use Google Search by speaking on
a mobile device or a PC, rather than entering data via a keyboard. It is one of the popular recog-
nizers available for Android and supports a wide variety of languages. The app has a very simple
Activity to notify users for speaking, and the dialog closes promptly as soon as the user stops talk-
ing. (Google Now mentioned above is not exactly the same as Google Voice Search. Google Now
is a feature of the Google Search app for Android. It shows information about what is currently
happening now or will happen in the near future, such as reservations, calender events, weather,
and travel information.) Figure 10-2 below shows a UI of a Google Voice Search app.

Figure 10-2 A UI of a Google Voice Search App

These applications are built upon the Android voice recognition APIs, which are fairly easy
to use. The class SpeechRecognizer provides access to the speech recognition service, which
allows access to the speech recognizer. The Android documentation recommends that we should
not instantiate this class directly, but call createSpeechRecognizer (Context), and the class’s
methods must be invoked only from the main application thread. For most SR applications, audio
data are sent to remote servers, where speech recognition is performed. Consequently. as most
tasks are done remotely, the API should not be used for continuous recognition, which would
consume a significant amount of battery and bandwidth. For the API to work properly, a voice
recognizer must have been installed in the Android device where the app runs. Normally, the app
must be run in a real device. The emulator cannot perform the recognition tasks properly.

Our examples discussed below use a recognizer based on Google Voice Recognition (GVR),
which uses neural network algorithms to convert human audio speech to text. GVR works for a
number of major languages but we have only considered English in our applications. A neural
network consists of many processors working in parallel, mimicking a virtual brain. The usage
of parallel processors allows for more computing power and better operation in real-time, but
what truly makes a neural network distinct is its ability to adapt and learn based on previous

Chapter 10 Speech Recognition 3

data. A neural network does not use one specific algorithm to achieve its task. It learns by the
example of other data. In our examples, GVR uses the Internet to access its large database for
voice recognition attempted by previous users. It also looks at previous Google search queries so
that the voice recognition engine can guess which phrases are more commonly used than others.
This way, even if the user does not speak a certain word clearly, GVR can use the context of the
rest of the spoken phrase or sentence to extrapolate what the user is most likely trying to say. In
general, a neural network can learn from two major categories of learning methods : supervised
or self-organized. In supervised training, an external teacher provides labeled data and the desired
output. Meanwhile, self-organization network takes unlabeled data and finds groups and patterns
in the data by itself. GVR learns from its own database through the self-organization method.

10.2 A Simple Example

We present here a very simple example of writing an app that converts spoken words to text by
making use of the speech recognition API. In this example (SttDemo0), a button is presented to the
user. When the user clicks on the button, a Google Speech dialog appears and the user can speak.
As soon as the user stops speaking, the dialog vanishes and the text of the speech is shown (Figure
10-4). The complete Java code of this app is listed below:

Program Listing 10-1 MainActivity.java of Project SttDemo0
————————————————————————————————————-

package stt.sttdemo0;

import java.util.*;
import android.widget.*;
import android.os.Bundle;
import android.view.View;
import android.content.pm.*;
import android.app.Activity;
import android.content.Intent;
import android.speech.RecognizerIntent;

/**
* A very simple SR application that starts speech recognition

* activity through the use of RecognizerIntent.

* Spoken words are saved as a list of words of String.

*/
public class MainActivity extends Activity
{

private static final int REQUEST_CODE = 1989;
private ListView words;

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

Button speechButton=(Button) findViewById(R.id.speechbutton);
words = (ListView) findViewById(R.id.listview);

PackageManager pm = getPackageManager();

4 A Simple Example

List<ResolveInfo> activities = pm.queryIntentActivities(
new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH), 0);

// Disable button in the absence of recognition service
if (activities.size() == 0) {

speechButton.setEnabled (false);
speechButton.setText ("Recognizer not present");

}
}

public void onClick(View view)
{

startSpeechRecognition();
}

// Start the speech recognition activity through an intent.
private void startSpeechRecognition()
{

Intent intent = new Intent (
RecognizerIntent.ACTION_RECOGNIZE_SPEECH);

intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);

startActivityForResult(intent, REQUEST_CODE);
}

// Handle the results from the speech recognition activity.
@Override
protected void onActivityResult(int requestCode,

int result, Intent intent)
{

if (requestCode == REQUEST_CODE && result == RESULT_OK)
{

// Populate the list by words recognized by engine
ArrayList<String> matches=intent.getStringArrayListExtra(

RecognizerIntent.EXTRA_RESULTS);
words.setAdapter(new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1,
matches));

}
super.onActivityResult(requestCode, result, intent);

}
}
--

This class, MainActivity, defines a ListView variable named words for displaying strings. When
a user speaks, the recognition engine guesses what the speaker says and puts all the guessed sen-
tences in words.

Inside the onCreate method, the class RecognizerIntent consists of constants for supporting
speech recognition through starting an Intent. The String constant ACTION RECOGNIZE SPEECH
tells to start an activity that will prompt the user for speech and send it through a speech recognizer.
If an appropriate recognizer is present, the Activity will be a started successfully and added to the
List activities; if no recognizer is present then no activity will be added to the List. Therefore if
activities.size() is 0, we disable the speech button with the statement

speechButton.setEnabled (false);

Chapter 10 Speech Recognition 5

and display a message saying Recognizer not present (Figure 10-3(a)). If a speech recognizer
exists in the system, the speech button is displayed (Figure 10-3(b)).

When we click on the speech button, the method startSpeechRecognition() is called. This
method will call startActivityForResult (Intent, int), which is a method of the class Activity. We
use startActivityForResult rather than startActivity because it allows us to get a result back from an
activity when it ends. The second integer parameter of the method is a request code that identifies
the call and the result will come back through our onActivityResult (int, int, Intent) method.
In our example, the request code is REQUEST CODE, which is set to 1989. The method puts
all the strings that the recognition engine has recognized in the ArrayList matches. The String
RecognizerIntent.EXTRA RESULTS signifies an ArrayList<String> of the recognition results
when performing ACTION RECOGNIZE SPEECH of RecognizerIntent. It will be present only
when RESULT OK is returned in an activity result. In a PendingIntent, the lack of this extra
indicates failure.

To handle the returned results, we have used an ArrayAdaptor, which is one of the available
adaptors in Android. An Adaptor is a collection handler that returns an item of the collection as
a view. The ArrayAdapter class can handle a list or an array of Java objects as input, and every
Java object is mapped to one row. We have used the android.R.layout class of the Android OS to
display the strings; the class contains all of the publicly available layouts. In particular, we have
used the layout simple list item 1 for the display.

In the code, setAdapter(ListAdapter) is a public method of the class ListView. In the exam-
ple, it sets the data behind the ListView object words; its input parameter is a ListAdapter object
responsible for maintaining the data of the list and for producing a view to represent an item of the
data set.

The xml layout code, activity main.xml of this project is very simple. It is presented in Listing
10-2 below:

Program Listing 10-2 activity main.xml of Project SttDemo0
————————————————————————————————————-

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:orientation="vertical">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:paddingBottom="4dip"
android:text="Click Speech Button, then start speaking" />

<Button android:id="@+id/speechbutton"
android:layout_width="fill_parent"
android:onClick="onClick"
android:layout_height="wrap_content"
android:text="Speech Button" />

<ListView android:id="@+id/listview"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1" />

</LinearLayout>
--

6 A Simple Example

When we run the application, it presents one of the two displays shown in Figure 10-3. Figure
10-3(a) shows the UI when the app cannot find a valid recognition engine in the system. The
button is disabled and will not respond to any clicks. Figure 10-3(b) shows the case when a valid
recognizer is detected. The user activates the recognition engine by clicking on the button.

When the user clicks on the speech button, the app presents a dialog as shown in Figure 10-4(a).
The user speaks to the phone and the engine guesses what the user says, converting all the possible
guesses into text; the app saves the strings of text in a list. As soon as the user stops speaking, the
dialog closes and the app presents the list of the guessed words. Figure 10-4(b) shows a sample
output of the app. The user had spoken the sentence: Hello, everyone. The figure shows all the
possible sentences that the engine thought it might have heard.

(a) (b)
Figure 10-3 UI of SttDemo0

(a) (b)
Figure 10-4 Input and Output of SttDemo0

Chapter 10 Speech Recognition 7

	Chapter 9 Text To Speech (TTS) and Audio
	9.1 Introduction
	9.2 The TextToSpeech Class
	9.3 A Simple TTS Example
	9.4 Writing Speech to a File
	9.4.1 Playback Options
	9.4.2 Saving Speech

	9.5 Speak From a File with Pause/Resume
	9.5.1 Synchronization by Condition Variable
	9.5.2 Speak Using a Different Thread

	9.6 Playing Audio Clips
	9.6.1 Playing Sound
	9.6.2 Simple Examples of Using MediaPlayer
	9.6.3 Asynchronous Playback of MediaPlayer

