Chapter 4 Android Graphics and OpenGL ES 1.X

4.1 Graphics Classes

Android provides rich features for developers to create high-quality 2D and 3D graphics applica-
tions. Besides the conventional Java graphics interface, it supports OpenGL ES, an open source
API meaning Open Graphics Library for Embedded System, which is widely used in 3D graph-
ics modeling and creation of 3D scenes. We will discuss Android graphics programming with
OpenGL ES in this chapter and Chapter 6. In this section, we discuss briefly basic graphics
classes that we use often in our applications. For details of the classes, one can refer to the official
Android developer site:

http://developer.android.com/reference/packages.html

From the site, we can find all the Android APIs and all the API classes.

4.1.1 Class View and Subclasses

Class View is public and is a child of Object. It is used as a basis for building user interface
components. A View object consists of a rectangular area on the screen to handle events and
drawings. View is the parent of widgets for creating interactive user interface (UI) components
such as buttons, and text fields. Its child ViewGroup is the parent of layouts, which are invisible
containers holding other Views:

public class View extends Object
implements Drawable.Callback KeyEvent.Callback AccessibilityEventSource

java.lang.Object
| -—android.view.View

Known Direct Subclasses
AnalogClock, ImageView, KeyboardView, MediaRouteButton, ProgressBar,
Space, SurfaceView, TextView, TextureView, ViewGroup, ViewStub

The views in a window are all organized in a single tree. We can add views either from code or
by defining a tree of views in XML layout files. Once we have created a tree of views, we typically
wish to perform a few types of common operations:

1. Set properties: Set the properties of view such as setting the text of a TextView. We can
also set the properties that are known at build time in the XML layout files.

2. Set focus: Set moving focus in response to user input. We can call requestFocus() to force
focus to a specific view.

3. Set up listeners: Set up listeners to be notified when something interesting happens to the
view, such as gaining or losing focus, or button clicking.

4. Set visibility: Hide or show views using setVisibility(int).

We can implement a custom view by implementing some of the following methods:

Class SurfaceView

Category Methods Description
Creation onFinishInflate() Called after a view and all of its children have been
inflated from XML.
Layout onMeasure(int, int) Called to determine the size requirements of this view
and its children.
onLayout(boolean, Called upon this view’s assigning a size and position to
int,int,int,int) its children.
onSizeChanged(int, Called upon the changing of the view size.
int,int,int)
Drawing onDraw(Called upon the view’s rendering its content.
android.graphics.Canvas)
Event onKeyDown(int,KeyEvent) Called upon occurence of a new hardware key event.
processing | onKeyUp(int,KeyEvent) Called upon occurence of a hardware key-up event.
onTrackballEvent(Called upon a trackball motion event.
MotionEvent)
onTouchEvent(Called upon a touch screen motion event.
MotionEvent)
Focus onFocusChanged(boolean, Called upon the view gaining or losing focus.
int,android.graphics.Rect)
onWindowFocusChanged(boolean) | Called when the window that contains the view
gains or loses focus.
Attaching onAttachedToWindow() Called when the view is being attached to a window.
onDetachedFromWindow() Called when the view is begin detached from
its window.
onWindow VisibilityChanged(int) Called when the visibility of the window
that contains the view has changed.

A View object may have an integer ID associated with it. The ID is typically assigned in a
layout XML file. It is used to find a specific view within the view tree. The following is a common
pattern of using the ID:

1. Define a Button in the layout file and assign it a unique ID:

<Button
android:id="@+id/my_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/my_button_text"/>

2. From the onCreate method of an Activity, find the Button:
Button myButton = (Button) findViewBylId(R.id.my_button);

4.1.2 Class SurfaceView

Class SurfaceView is a child of View. It provides a drawing surface embedded in a view hierarchy.
A user can control the size and format of a SurfaceView object, but the class places the surface at
the proper location on the screen:

java.lang.Object
|- android.view.View
|- android.view.SurfaceView

Known Direct Subclasses:
GLSurfaceView, RSSurfaceView, VideoView

A surface object is ordered by its z-coordinate so that it is behind the window holding its
SurfaceView. The SurfaceView object creates a hole in its window to display its surface. The
transparent region that makes the surface visible depends on the layout positions in the view hier-
archy.

Chapter 4 Android Graphics and OpenGL ES 1.X 3

We can access the underlying surface via the SurfaceHolder interface, which can be retrieved
by calling getHolder(). The following is a summary of the class.

Public Methods

void

boolean

void

void

void

void

SurfaceHolder

draw (Canvas canvas)

It renders this view and its children to the given Canvas.
gatherTransparentRegion (Region region)

It performs an optimization on the view hierarchy.

setSecure (boolean isSecure)

It sets whether the content of the surface is to be viewed as secure, preventing it from ap-
pearing in screenshots or on non-secure displays.

setVisibility (int visibility)

It sets whether the surface is visible or not.

Variable visibility is one of VISIBLE, INVISIBLE, or GONE.
setZOrderMediaOverlay (boolean isMediaOverlay)

It sets whether the surface is overlayed on top of another surface.
setZOrderOnTop(boolean onTop)

It sets whether the surface is overlayed on top of its window.
getHolder()

It returns the SurfaceHolder of the surface.

Protected Methods

void

void

void

void

void

dispatchDraw(Canvas canvas)

It is called by draw to draw the child views.
onAttachedToWindow()

It is called when the view is attached to a window.
onDetachedFromWindow()

It is called when the view is detached from a window.
onMeasure(int width, int height)

It measures the view to determine the width and the height.
onWindow VisibilityChanged(int visibility)

It called when its window has changed its visibility.

Public Constructors

public
public
public

SurfaceView (Context context)
SurfaceView (Context context, AttributeSet attrs)
SurfaceView (Context context, AttributeSet attrs, int defStyle)

4.1.3 Class GLSurfaceView

When we write an Android graphics application, we usually start by extending the class GLSur-
faceView. It is a public class, a child of class SurfaceView, using the dedicated surface for rendering
using OpenGL. It provides the following features:

A S

Manages a surface that can be embedded in the Android view system.

Manages an EGL display, enabling OpenGL objects to be rendered on a surface.
Accepts a Renderer object provided by a user to do the actual rendering.

Renders on a dedicated thread to separate rendering from the tasks of an UI thread.
Supports both continuous and on-demand rendering.

Wraps, traces, and/or error-checks the OpenGL calls of the renderer.

4 Class GLSurfaceView

The following are its relations with other related classes:

public class GLSurfaceView extends SurfaceView
implements SurfaceHolder.Callback

java.lang.Object
| -— android.view.View
| -— android.view.SurfaceView
| -— android.opengl.GLSurfaceView

We typically use GLSurfaceView by extending it and overriding one or more of the View system
input event methods. We often use the set methods to customize views.

We can call setRenderer(Renderer) to initialize GLSurfaceView. On the other hand, we can
modify the default behavior of GLSurfaceView by calling one or more of the following methods
prior to calling setRenderer:

setDebugFlags(int)
setEGLConfigChooser(boolean)
setEGLConfigChooser(EGLConfigChooser)
setEGLConfigChooser(int, int, int, int, int, int)
setGLWrapper(GLWrapper)

By default GLSurfaceView creates a PixelFormat.RGB_888 format surface. We can also call
getHolder().setFormat(PixelFormat. TRANSLUCENT) to set a translucent surface, which is usu-
ally a 32-bit-per-pixel surface with 8 bits per component.

There are a few steps involved in setting up a GLSurfaceView.

Choosing an EGL Configuration

An Android device may support multiple EGLConfig rendering configurations, which may dif-
fer in the number of available data channels, and the number of bits allocated to each channel.
Therefore, GLSurfaceView has to first choose what EGLConfig to use, and by default it chooses an
EGLConfig that has an RGB_888 pixel format, with at least a 16-bit depth buffer and without any
stencil buffer. We can always choose a different EGLConfig by calling one of the setEGL Config-
Chooser methods to override the default behavior.

Debug Behavior

We can optionally modify the GLSurfaceView behavior by calling one or more of the debugging
methods, setDebugFlags(int) , and setGLWrapper(GLSurfaceView.GLWrapper), which may be
called before and/or after setRenderer. Normally the methods are called before setRenderer so

that they take effect immediately.

Setting a Renderer

Finally, we need to register a GLSurfaceView.Renderer by calling setRenderer(GLSurfaceView.Renderer).
The renderer will do the actual OpenGL rendering.

Rendering Mode

Once we have setup the renderer, we can choose to draw continuously or on-demand by calling
setRenderMode(int). The default is continuous rendering.

Chapter 4 Android Graphics and OpenGL ES 1.X 5

Activity Life-cycle

A GLSurfaceView must be notified when the associated activity is paused or resumed. GLSur-
faceView clients are required to call onPause() when the activity pauses and onResume() when
the activity resumes. These calls let GLSurfaceView to pause and resume the rendering thread.
They also allow GLSurfaceView to release and recreate the OpenGL display.

Handling events

To handle an event we normally extend GLSurfaceView and override the appropriate method.
We may need to communicate with the Renderer object running in the rendering thread. We can do
this using any standard Java thread communication techniques, or calling queueEvent(Runnable)
as shown in the following example:

class MyGLSurfaceView extends GLSurfaceView {
private MyRenderer myRenderer;

public void start () {
myRenderer = ...;
setRenderer (myRenderer);

}

public boolean onKeyDown (int key, KeyEvent event) {
if (key == KeyEvent.KEYCODE_DPAD_CENTER) {
queueEvent (new Runnable () {

// Method called on rendering thread:
public void run() {
myRenderer.handleDpadCenter () ;
Pr)
return true;
}
return super.onKeyDown (key, event);

}

4.2 OpenGL ES

The Android framework supports both the OpenGL ES 1.0/1.1 and OpenGL ES 2.0 APIs. OpenGL
ES, where ES is short for embedded system, is a flavor of the OpenGL specification tailored for
embedded devices. OpenGL ES is royalty-free and cross-platform. Its APIs have full-function
support for 2D and 3D graphics on embedded systems such as mobile phones and appliances.
OpenGL ES 1.X uses the traditional fixed-pipeline architecture and emphasizes hardware accel-
eration of the APIL. It offers enhanced functionality, good image quality and high performance.
OpenGL ES 2.X is for programmable hardware. It emphasizes a programmable 3D graphics
pipeline and allows the user to create shader and program objects. With ES 2.X, one can also write
vertex and fragment shaders in the OpenGL ES Shading Language. On the other hand, OpenGL
ES 2.0 does not support the fixed function transformation and fragment pipeline that OpenGL ES
1.X supports.

Since Android 1.0, the Android framework has supported the OpenGL ES 1.0 and 1.1 API
specifications. Starting from Android 2.2 (API Level 8), the framework supports the OpenGL ES
2.0 API specification. One can find the API specifications at the site,

http://developer.android.com/guide/topics/graphics/opengl.html

6 Creating an Activity with GLSurfaceView

However, earlier Android emulators do not support OpenGL ES 2.0. In this chapter, our discus-
sions focus on OpenGL ES 1.X, which has certain limitations. In particular, it does not support
direct vertex handling. For example, there are no glBegin/glEnd and glVertex* functions. Some
constants such as GL_POLYGONS and GL_QUADS are missing. We will discuss ES 2.0 in Chap-
ter 6.

4.3 OpenGL ES 1.X

We will discuss an example of using OpenGL ES 1.0 in Android, which was adopted from an
example presented in the tutorial section of the Android developer site at

http://developer.android.com/resources/tutorials/opengl/opengl-es10.html

4.3.1 Creating an Activity with GLSurfaceView

Before we start using OpenGL to create graphics in Android, we have to implement the class
GLSurfaceView, which extends SurfaceView, and GLSurfaceView.Renderer, which is responsible
for making OpenGL calls to render a frame. Typically, a GLSurfaceView client has a class imple-
menting this interface, and calls setRenderer(GLSurfaceView.Renderer) to register the renderer
with the GLSurfaceView. The renderer is handled by a separate thread, so that the main thread,
which normally provides user interface is decoupled from the rendering performance. Clients
typically have to communicate with the renderer via the main thread that interacts with the user.

We will use Android 4.3 (Level 18) in our example and use Eclipse IDE to create the activity
GLSurfaceView:

1. In Eclipse, choose File > New > Project > Android Application Project.

2. Enter the following information for the New Android Project:

Project Name: HelloES
Application Name: HelloES
Package Name: opengl.es10

For other entries, use the defaults. Then click Next > Next > Next.
3. Choose Blank Activity and click Next.

4. Use the default names for Blank Activity:

Activity Name: MainActivity
Layout Name: activity_main
Navigation Type: None

Click Finish to create the project HelloES

5. Project HelloES should appear in Package Explorer of Eclipse. Choose HelloES > src >
opengl.es10 > MainActivity.java to open the file “MainActivity.java”. Modify this file as
follows:

package opengl.esl0;

import android.app.Activity;

Chapter 4 Android Graphics and OpenGL ES 1.X 7

import android.os.Bundle;
import android.content.Context;
import android.opengl.GLSurfaceView;

public class MainActivity extends Activity {
private GLSurfaceView mGLView;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity.
mGLView = new HelloESSurfaceView (this);
setContentView (mGLView) ;

@Override

protected void onPause () {
super.onPause () ;
// The following call pauses the rendering thread.
mGLView.onPause () ;

@Override

protected void onResume () {
super.onResume () ;
// The following call resumes a paused rendering thread.
mGLView.onResume () ;

class HelloESSurfaceView extends GLSurfaceView {

public HelloESSurfaceView (Context context) {
super (context) ;

// Set the Renderer for drawing on the GLSurfaceView
setRenderer (new HelloESRenderer ());

Note that you should see an error indicator at setRenderer(new HelloESRenderer()); . This
is because up to this point, we have not defined the class HelloESRenderer.

In the MainActivity class shown above, we use a single GLSurfaceView for its view; the class
also implements callbacks for pausing and resuming activities. The HelloESSurfaceView
class is responsible for setting the renderer to draw on the GLSurfaceView.

6. In Eclipse, choose File > New > File and enter “HelloESRenderer.java” for File name and
click Finish to create a new file for the following class HelloESRenderer, which implements
the GLSurfaceView.Renderer interface:

package opengl.eslO;

import javax.microedition.khronos.egl.EGLConfig;
import Jjavax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView;

8 Drawing a Triangle on GLSurfaceView

public class HelloESRenderer implements GLSurfaceView.Renderer ({

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// Set the background frame color to blue
gl.glClearColor(0.0£f, 0.0£, 0.9£f, 1.0f);
// Enable use of vertex arrays
gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ;
}
public void onDrawFrame (GL10 gl) {
// Redraw background color
gl.glClear (GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
}
public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport (0, 0, width, height);
}

7. Now you can run the application by choosing Run > Run > Android Application and click
OK. The Android emulator will start and will show a blue background screen. The code
above is mostly self-explained. The functions glClear(), glClearColor(), and glViewport()
are the standard OpneGL commands. (If you are not familiar with OpenGL commands, you
may refer to the book An Introduction to 3D Computer Graphics, Stereoscopic Image, and
Animation in OpenGL and C/C++ by Fore June, for a brief quick introduction.) The only
non-OpenGL functions are the few used by Android to do the initialization, which include
the following:

¢ onSurfaceCreated() is called once for setting up the GLSurfaceView environment.

e onDrawFrame() is called whenever we redraw the GLSurfaceView. 1t is called to
draw the current frame.

o onSurfaceChanged() is called when the geometry of the GLSurfaceView changes.
This is similar to the glutPostRedisplay() used in C programs.

4.3.2 Drawing a Triangle on GLSurfaceView

With the template code provided above, we should be able to make 2D or 3D graphics using
OpenGL ES 1.X commands. We discuss here how to draw a triangle.

By default OpenGL ES assumes a world coordinate system where the center of the GLSurface-
View frame is at (0,0,0); the coordinates of the lower left corner and upper right corner are at
(=1,—1,0) and (1, 1,0) respectively. Therefore, as an example, we specify a triangle with the
following vertex coordinates:

(—0.6,—0.5,0), (0.6, —0.5, 0), (0.0,0.5, 0)

We will display this triangle with green color on the blue background. To accomplish this, we
modify the HelloESRenderer class to the following:

package opengl.esl0;

import java.nio.x;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView;

public class HelloESRenderer implements GLSurfaceView.Renderer ({
private FloatBuffer triangle;

Chapter 4 Android Graphics and OpenGL ES 1.X 9

public void onSurfaceCreated(GL10 gl, EGLConfig config) {

}

// Set the background frame color to blue
gl.glClearColor(0.0f, 0.0f, 0.9f, 1.0f);

// initialize the triangle vertex array
initShapes();

// Enable use of vertex arrays
gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ;

public void onDrawFrame (GL10 gl) {

}

// Redraw background color

gl.glClear (GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
// Draw the triangle using green color

gl.glColor4f(0.0£f, 1.0f, 0.0f, 0.0f);

gl.glVertexPointer (3, GL10.GL_FLOAT, 0, triangle);
gl.glDrawArrays (GL10.GL_TRIANGLES, 0, 3);

public void onSurfaceChanged(GL10 gl, int width, int height) {

}

gl.glvViewport (0, 0, width, height);

private void initShapes|() {

(
float vertices[] = { // (x, y, z) of triangle
-0.6£f, -0.5f, O,
0.6f, -0.5f, O,
0.0£, 0.5f, O
i
// initialize vertex Buffer for triangle
// argument=(# of coordinate values x 4 bytes per float)
ByteBuffer vbb = ByteBuffer.allocateDirect (vertices.length x 4);
// use the device hardware’s native byte order
vbb.order (ByteOrder.nativeOrder());
// create a floating point buffer from the ByteBuffer
triangle = vbb.asFloatBuffer();
// add the coordinates to the FloatBuffer
triangle.put (vertices);
// set the buffer to read the first vertex coordinates
triangle.position(0);

HelloES

V_!r_@f_#r_fﬁr_h[_&f_f[_(’_)
ol e o v i o
[aulsulonl el il e 22]

Figure 4-1 HelloES Graphics Output

(Do not forget to save the file by clicking the save icon, which is a small disk image.) We can re-

10 Setting Camera View and Transformations

compile our graphics application by first clicking on the file MainActivity.java and then choosing
Run in Eclipse. The Android emulator will run the application and we should see a green triangle
displayed on a blue background as shown in Figure 4-1 above.

4.3.3 Setting Camera View and Transformations

Just as we do in a normal C program, we use gluLLookAt() to set the camera view and posi-
tion. The modelview transformation and projection transformation functions of basic OpenGL
programming also apply here. As an example, we modify the functions onDrawFrame() and on-
SurfaceChange() of the class HelloESRenderer as follows to include projection and modelview
transformations; our camera is at (0,0,5) viewing along the negative z direction. We also scale
the triangle by a factor of 3 along the y-direction and rotate it about the z-axis by 30°. (Note again
that we first scale, then rotate.)

import android.opengl.GLU;

public void onDrawFrame (GL10 gl) {
// Redraw background color
gl.glClear (GL10.GL_COLOR_BUFFER_BIT|GL10.GL_DEPTH_BUFFER_BIT);
// Set GL_MODELVIEW transformation mode
gl.glMatrixMode (GL10.GL_MODELVIEW) ;
gl.glLoadIdentity(); //reset the matrix to its default state

// When using GL_MODELVIEW, you must set the view point.
// camera at (0, 0, 5) look at (0,0,0), up = (0, 1, 0)
GLU.gluLookAt (g1, 0, 0, 5, 0f, 0f, 0f, O0f, 1.0f, 0.0f);
//rotate about z-axis for 30 degrees

gl.glRotatef (30, 0, 0, 1);

//magnify triangle by x3 in y-direction

gl.glScalef (1, 3, 1);

// Draw the triangle

gl.glColor4f(0.0£f, 1.0f, 0.0f, 0.0f);
gl.glVertexPointer (3, GL10.GL_FLOAT, 0, triangle);
gl.glDrawArrays (GL10.GL_TRIANGLES, 0, 3);

public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glvViewport (0, 0, width, height);

float aratio = (float) width / height; //aspect ratio

float 1, r, b, t, n, f; //left, right,bottom, top, near, far
b =-1.5f; t = 1.5f; n=3.0f; £ = 7.0f;

1l = b x aratio; r = t * aratio;

gl.glMatrixMode (GL10.GL_PROJECTION); //set projection mode
gl.glLoadIdentity () ; // reset the matrix

gl.glFrustumf(1, r, b, t, n, f); //apply projection matrix

We also need to include the header statement “import android.opengl.GLU;” at the beginning of
the file as we need to use the function GLU.gluLookAt(). After making the modifications, we
can run the program MainActivity.java again. The output of the program is shown in Figure 4-2
below.

Chapter 4 Android Graphics and OpenGL ES 1.X 11

LNeNe) 5556:avd233

% oul @ 11118
HelloES

Figure 4-2 HelloES Output with Projection and Modelview Transformations

4.4 Animation and Event Handling

We can make use of the methods (functions) provided by the Android class SystemClock to create
animated graphics. The class consists of core timekeeping facilities. To use the methods. we have
to import the class by adding the header statement,

import android.os.SystemClock;

There are three clocks we can use to keep time. Each method returns a long data type:

1.

SystemClock.currentTimeMillis() gives the current time and date expressed in millisec-
onds since the epoch. This clock can be set by the user or the phone network.

SystemClock.uptimeMillis() gives the active time lapse in milliseconds since the system
was booted. This clock stops when the process is in a blocked or a sleep state like waiting
for an I/0 event or executing Thread.sleep().

SystemClock.elapsedRealtime() gives the counts in milliseconds since the system was
booted, including the time when the process is blocked or in a sleep state.

There are several ways to control timing events in an animation process:

1.

Thread.sleep(millis) and Object.wait(millis) are standard blocking functions that can be
used to generate desired time delays. When these functions are executed, the uptimeMillis()
clock stops. The thread can be woken up by the function Thread.interrupt().

SystemClock.sleep(millis) is a utility function very similar to Thread.sleep(millis), except
that it ignores InterruptedException.

We can use the Handler class to schedule asynchronous callbacks at an absolute or relative
time. A handler object uses the uptimeMillis() clock to keep time. It requires an event loop
to wait for an event to happen.

We can use the AlarmManager class to access the system alarm services such as triggering
one-time or recurring events when the thread is in a blocked state.

12 Animation and Event Handling

As an example, let us rotate the triangle of Figure 4-2 discussed above for 6° every second. To
accomplish this, all we need to do is to add to the class HelloESRenderer a data member angle of
type float:

public float angle = 0.0f;
Then we make the following modifications to the code of its member function onDrawFrame():
public void onDrawFrame (GL10 gl) {

gl.glLoadIdentity(); // reset the matrix to its default state
GLU.gluLookAt (g1, 0, 0, 5, 0f, 0f, 0f, Of, 1.0f, 0.0f);
SystemClock.sleep (1000); //delay for 1 second

angle += 6; //increment angle by 6 degrees

//rotate triangle about z-axis

gl.glRotatef (angle, 0.0f, 0.0f, 1.0f);

//magnify triangle by x3 in y-direction

gl.glScalef (1, 3, 1);

// Draw the triangle

When we run the modified program, we will see the triangle of Figure 4-2 rotating anticlockwise
6 every second.

If we want the triangle to interact with us rather than rotating automatically, we need to expand
our implementation of GLSurfaceView to override the onTouchEvent() function to listen for touch
events. Since we have defined above the data member angle of the HelloESRenderer class to be
public, the member is exposed to other classes. We just need to modify the HelloESSurfaceView
class to process touch events and pass the data to the renderer. To accomplish this, we have to
include the import statement,

import android.view.MotionEvent;

In the onDrawFrame() function, we just comment out the time delay and increment statements
as the angle value is determined by touch events:

public void onDrawFrame (GL10 gl) {

// SystemClock.sleep (1000); //delay for 1 second
// angle += 6;

gl.glRotatef (angle, 0.0f, 0.0f, 1.0f);
}

Then we modify the HelloESSurfaceView class (in the file “MainActivity.java”) as follows. We
set the renderer member so that we have a handle to pass in rotation input and set the render mode
to RENDERMODE_WHEN_DIRTY, which means that the method onDrawFrame() is not called
unless something calls requestRender() explicitly for rendering. Consequently, setting rendering
to this mode forbids the renderer to refresh automatically. We also override the onTouchEvent()
method to listen for touch events and pass the parameters to our renderer:

class HelloESSurfaceView extends GLSurfaceView {
private final float TOUCH_SCALE_FACTOR = 180.0f / 320;
private HelloESRenderer renderer;
private float previousX;
private float previousY;

public HelloESSurfaceView (Context context) {
super (context) ;
// set the renderer member
renderer = new HelloESRenderer();
setRenderer (renderer) ;

Chapter 4 Android Graphics and OpenGL ES 1.X 13

// Render the view only when there is a change; onDrawFrame
// 1s not called unless requestRender() is called explicitly
setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY) ;

}

@Override

public boolean onTouchEvent (MotionEvent e) {
// MotionEvent reports input details from the touch screen
// and other input controls. Here, we are only interested
// in events where the touch position has changed.

float x = e.getX();
float y = e.getY();

switch (e.getAction()) {
case MotionEvent .ACTION_MOVE:

float dx = x - previousX;
float dy = y - previousY;

// reverse direction of rotation above the mid-line
if (y > getHeight () / 2)
dx = dx * -1 ;

// reverse direction of rotation to left of the mid-line
if (x < getWidth() / 2)
dy = dy x -1 ;

renderer.angle += (dx + dy) = TOUCH_SCALE_FACTOR;
requestRender () ;

previousX = x;
previousY = y;
return true;

}

As we have set the render mode to GLSurfaceView. RENDERMODE_WHEN_DIRTY, the scene will
be rendered only when there is a change in the scene. When we run the application, we should
see the green triangle again. If we drag our mouse and move its cursor around the center in an
anticlockwise direction, the triangle will rotate in a clockwise direction. Conversely, if we drag
the mouse clockwise, the triangle rotates anticlockwise.

In summary, these sections give us an introduction of creating 2D and 3D graphics in the An-
droid platform using OpenGL. We can find a lot more examples and resources of creating graphics
in Android at its official site and associated links at

http://developer.android.com/guide/topics/graphics/opengl.html

4.5 Rendering a 3D Color Cube

In these few sections, we extend the example of the previous section where we rotate a 2D triangle
when we drag the mouse. First, we discuss rendering a color cube, which can be rotated by
dragging the mouse. Second, we discuss putting textures on the cube. In the process, we will
discuss other related but stand-alone graphics topics.

14 Color Cube

4.5.1 Color Cube

A cube consists of 8 vertices and 6 faces, each of which is a square. OpenGL ES 1.X does not
support primitives of GL_QUAD or GL_.POLYGON. It only renders triangles. So to render any
polygon other than a triangle, we have to first decompose it into triangles.

Any polygon has two faces: a front face and a back face. Whether a face is front or back
depends on our winding convention, the way we order the vertices of the polygon. In general
we want to specify the winding in a way that the back faces of an object are those facing the
interior of the object and front faces are those facing the exterior. The winding of a front face
could be clockwise or counterclockwise and can be specified by the command gl.glFrontFace().
For example,

gl.glFrontFace (GL10.GL_CCW);

specifies that a face is a front face if the vertices of the triangle is ordered in the counter-clockwise
(CCW) direction, and it is a back face if the vertices are ordered in the clockwise (CW) direction.
In our discussion, we always consider a face with counter-clockwise winding to be a front face.
In practice, if an object is opaque, we do not want to display any of its back faces as they are
facing the interior of the object. We can suppress rendering back faces using the commands,

gl.glEnable(GL10.GL_CULL_FACE);
gl.glCullFace (GL10.GL_BACK);

Now consider a cube whose center is at the origin with length 2. The coordinates of the vertices
of the face (square) at z = 1 are given by

vy =(—1,-1,1), vs = (1,—-1,1), v¢ = (1,1,1), v7 = (—1,1,1)

The front face of the square is specified by v4v5vgv7 which are CCW and its back face is specified
by v4v7vgvs which are CW when we observe the face from a point at z > 1. The square can be
decomposed into two triangles as shown in Figure 4-3. When we make the decomposition, we
must be careful that the windings of the triangles are consistent with that of the face considered.

(-1,1,1) (1,1,1)

U7 Ve U7 Vg

™
AN
AN
— AN
AN
AN
AN
AN

V4 Us V4 Us

(-1,-1,1) (1,-1,1)

Square v4Us VU = Avavsv7 + Av7Us06
Figure 4-3. Decomposing a square into 2 triangles
In Figure 4-3, the vertices of a polygon are always specified in counterclockwise order.
Suppose we call this application and project cube. We follow the steps discussed in Section

4.3.1 to create an activity with GLSurfaceView. The file MainActivity.java of the previous section
is slightly modified to the code shown in Listing 4-1 below.

Chapter 4 Android Graphics and OpenGL ES 1.X

Program Listing 4-1 MainActivityjava for Rendering Cube

package opengl.cube;

import android.app.Activity;

import android.os.Bundle;

import android.content.Context;
import android.opengl.GLSurfaceView;
import android.view.MotionEvent;

public class MainActivity extends Activity {
private GLSurfaceView mGLView;

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
mGLView = new CubeSurfaceView (this);
setContentView (mGLView) ;

}

@Override

protected void onPause () {
super.onPause () ;
// The following call pauses the rendering thread.
mGLView.onPause () ;

}

@Override

protected void onResume () {
super.onResume () ;
// The following call resumes a paused rendering thread.
mGLView.onResume () ;

class CubeSurfaceView extends GLSurfaceView {
private final float TOUCH_SCALE_FACTOR = 180.0f / 320;
private CubeRenderer renderer;
private float previousX;
private float previousY;

public CubeSurfaceView (Context context) {
super (context) ;
// set the renderer member
renderer = new CubeRenderer();
setRenderer (renderer) ;
// Render the view only when there is a change
setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY) ;
}
@Override
public boolean onTouchEvent (MotionEvent e) {

// MotionEvent reports input details from the touch screen
// and other input controls. Here, we are only interested

// in events where the touch position has changed.
float x = e.getX();
float y = e.getY¥();

15

16 Color Cube

switch (e.getAction()) {
case MotionEvent .ACTION_MOVE:
float dx = x - previousX;
float dy = y - previousY;

// reverse direction of rotation above the mid-line
if (y > getHeight () / 2)
dx = dx » -1 ;
// reverse direction of rotation to left of the mid-line
if (x < getWidth() / 2)
dy = dy » -1 ;
renderer.angle += (dx + dy) » TOUCH_SCALE_FACTOR;
requestRender () ;
}
previousX = x;
previousY = vy;
return true;

As we can see from Listing 4-1, the class CubeSurfaceView extends GLSurfaceView and creates
an object of the CubeRenderer class, which is discussed below, to render a color cube.

Listing 4-2 shows the complete code of the file CubeRenderer.java, which contains the code of
the class CubeRenderer that implements GLSurfaceView.Renderer, and the code of the class Cube
that has the attributes of a cube with length 2 and center at the origin of the coordinate system.

The methods onSurfaceChanged and onDrawFrame are basically the equivalent of the GLUT
functions glutReshapeFunc and glutDisplayFunc. The former is called when there is a change
in surface size like the case when the phone switches between landscape and portrait modes. The
latter is called each time the cube is rendered.

The class Cube uses two FloatBuffer objects to store vertex and color data and a ByteBuffer to
store the face indices. To understand the code, we may also refer to the comments of it, which give
more detailed explanations of the processing of the data.

Program Listing 4-2 CubeRenderer.java

package opengl.cube;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.nio.FloatBuffer;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
import android.opengl.GLSurfaceView;

import android.opengl.GLU;

import android.os.SystemClock;

import android.view.MotionEvent;

public class CubeRenderer implements GLSurfaceView.Renderer ({
public float angle = 0.0f; //rotation angle
private Cube cube = new Cube();

Chapter 4 Android Graphics and OpenGL ES 1.X 17

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// Set the background frame color to grey, opaque
gl.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
gl.glEnable(GL10.GL_CULL_FACE); //Enable culling faces
gl.glCullFace (GL10.GL_BACK); //don’t render back faces

public void onDrawFrame (GL10 gl) {
// Redraw background color
gl.glClear (GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT) ;
// Set GL_MODELVIEW transformation mode
gl.glMatrixMode (GL10.GIL_MODELVIEW) ;
gl.glLoadIdentity(); // Reset the matrix to identity matrix
// Move objects away from view point to observe
gl.glTranslatef (0.0f, 0.0f, -10.0f);
// Rotate about a diagonal of cube
gl.glRotatef (angle, 1.0f, 1.0f, 1.0f);
cube.draw (gl); // Draw the cube
gl.glLoadIdentity () ; // Reset transformation matrix

}

@Override

public void onSurfaceChanged(GL10 gl, int width, int height) {
gl.glViewport (0, 0, width, height);
gl.glMatrixMode (GL10.GL_PROJECTION) ;
gl.glLoadIdentity(); // Reset projection matrix
// Setup viewing volume
GLU.gluPerspective (gl,45.0f, (float)width/ (float)height,0.1£f,100.0f);
gl.glViewport (0, 0, width, height);

gl.glMatrixMode (GL10.GL_MODELVIEW) ;
gl.glLoadIdentity(); // Reset transformation matrix

class Cube {
private FloatBuffer vertexBuffer;
private FloatBuffer colorBuffer;
private ByteBuffer indexBuffer;

// Coordinates of 8 vertices of 6 cube faces

private float vertices[] = {
-1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f,
1.0£, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f,
-1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f,
1.0£, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f };

// Colors of vertices
private float colors[] =
0.0f, 1.0f, 0.0f, 1.0f,

0.0f, 1.0£f, 0.0f£, 1.0f,
1.0£f, 0.5f£, 0.0f, 1.0f, 1.0f, 0.5f£, 0.0f, 1.0f,
1.0£, 0.0£, 0.0f, 1.0f, 1.0£, 0.0£, 0.0f, 1.0f,
0.0£, 0.0£f, 1.0f, 1.0f, 1.0£, 0.0f, 1.0f, 1.0f };

// indices of 12 triangles (6 squares) in GL_CCW
// referencing vertices[] array coordinates
private byte indices[] = {

18 Color Cube

public Cube () {
// initialize vertex Buffer for cube
// argument=(# of coordinate values * 4 bytes per float)
ByteBuffer byteBuf = ByteBuffer.allocateDirect (vertices.length * 4);
byteBuf.order (ByteOrder.nativeOrder ());
// create a floating point buffer from the ByteBuffer
vertexBuffer = byteBuf.asFloatBuffer();
// add the vertices coordinates to the FloatBuffer
vertexBuffer.put (vertices);
// set the buffer to read the first vertex coordinates
vertexBuffer.position (0);

// Do the same to colors array
byteBuf=ByteBuffer.allocateDirect (colors.lengthx4);
byteBuf.order (ByteOrder.nativeOrder ());

colorBuffer = byteBuf.asFloatBuffer();

colorBuffer.put (colors);

colorBuffer.position (0);

// indices are integers

indexBuffer = ByteBuffer.allocateDirect (indices.length);
indexBuffer.put (indices);

indexBuffer.position (0);

// Typical drawing routine using vertex array
public void draw(GL10 gl) {
//Counterclockwise order for front face vertices
gl.glFrontFace (GL10.GL_CCW) ;

//Points to the vertex buffers
gl.glVertexPointer (3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glColorPointer (4, GL10.GL_FLOAT, 0, colorBuffer);

//Enable client states

gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ;

gl.glEnableClientState (GL10.GL_COLOR_ARRAY) ;

//Draw vertices as triangles

gl.glDrawElements (GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE,
indexBuffer);

//Disable client state

gl.glDisableClientState (GL10.GL_VERTEX_ARRAY) ;

gl.glDisableClientState (GL10.GL_COLOR_ARRAY) ;

In Listing 4-2 above, the draw method of class Cube is a typical OpenGL drawing routine using
vertex array:

1. gl.glVertexPointer tells the renderer where to read the vertices coordinates and of what data
type they are. The first parameter is the number of coordinates of a vertex and it is 3 here for

Chapter 4 Android Graphics and OpenGL ES 1.X 19

the (z,y, z) 3D coordinates. The second parameter tells that data type of each coordinate
value is float. The third parameter, referred to as stride, is the offset between neighboring
vertices in the array. A value of 0 indicates that array is tightly packed, not containing other
data such as color values other than the vertex coordinates. The last parameter points to a
buffer, vertexBuffer in our example, where the vertex coordinates are held.

2. gl.glColorPointer tells the renderer where to read the color data of the vertices. It works
similarly to gl.glVertexPointer. The first parameter is 4 because a color tuple (r, g, b, a)
consists of four values representing red, green, blue and alpha (transparency).

3. gl.glEnableClientState enables OpenGL to use a vertex array for rendering.

4. gl.glDrawArrays tells OpenGL to draw the primitive. In our code, the first parameter,
GL10.GL_TRIANGLES tells the renderer to draw the vertices held in the vertex buffer as
triangles. The second parameter specifies the number (count) of vertices. In our example,
we have 6 faces. Each face has 2 triangles and each triangle has 3 vertices. Therefore, the
total number of vertices is

count =6 x 2 x 3 =36

The third parameter specifies the type of values in the array specified by the fourth parameter
which is a pointer pointing to the location where the indices of vertex data are stored.

5. We may think of glEnableClientState and glDisableClientState as begin ... end statements
in a program.

When we compile and run the app, we will see a color cube which may appear 2D as the
viewing point is right in front of it. We will see its 3D shape when we drag the mouse, which
rotates it. Figure 4-4 below shows an output of the app.

Figure 4-4 Color Cube

4.5.2 Rendering a Square Only

If we want to render a square only, we can define a class Square similar to the class Cube
presented in Listing 4-2, except that we use the primitive GL_.TRIANGLE_STRIP and method
gl.glDrawArrays rather than gl.glDrawElements to render the two triangles. A triangle strip is a

20 Rendering a Rotating Cube

series of connected triangles, two in our case. In this method, we only have to define four vertices
for a square. Using the square shown in Figure 4-3 as an example, OpenGL first draws the triangle
using vertices in the order of v4vsvy, then it takes the last vertex v; from the previous triangle
and uses the last side v;v5 of it as the basis for the new triangle which will be drawn in the order
v705vg. Listing 4-3 shows the code of class Square.

Program Listing 4-3 Class Square

class Square {

private FloatBuffer vertexBuffer; //buffer holding the vertices
private float vertices[] = { //Figure 4-3
-1.0£, -1.0£f, 1.0f, // v4 — bottom left
1.0£, -1.0f, 1.0f, // v5 — bottom right
-1.0f, 1.0f, 1.0f, // v6 — top left
1.0£, 1.0f, 1.0f // vl — top right

}i

public Square() {
ByteBuffer byteBuffer=ByteBuffer.allocateDirect (vertices.lengthx4);
byteBuffer.order (ByteOrder.nativeOrder());
vertexBuffer = byteBuffer.asFloatBuffer();
vertexBuffer.put (vertices);
vertexBuffer.position(0);

public void draw (GL10 gl) {
gl.glFrontFace (GL10.GL_CCW) ;
gl.glColor4f(1.0f, 1.0£f, 1.0f, 1.0f);
gl.glVertexPointer (3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ;

gl.glDrawArrays (GL10.GL_TRIANGLE_STRIP, 0, vertices.length / 3);

gl.glDisableClientState (GL10.GL_VERTEX_ARRAY) ;

The only other changes to render the square using the class CubeRenderer is to add the data
member declaration statement

private Square square = new Square();

to the class and to replace cube.draw() by square.draw(). Upon running the code, we should see a
white square over a grey background. Again we can drag the mouse to rotate the square.

4.5.3 Rendering a Rotating Cube

If we want to render a cube that rotates by itself, we simply do not set the render mode to REN-
DERMODE_WHEN_DIRTY. Then the method onDrawFrame(), which renders a frame, will be
called automatically at a certain frame rate. We just need to increment the rotation angles in this
method, assuming that each time onDrawFrame is called, the transformation matrix is first reset
to the identity matrix. The following code, which can be part of the file MainActivity.java shows
such a renderer.

Chapter 4 Android Graphics and OpenGL ES 1.X 21

class CubeRendererl implements Renderer

{

GL10 gl;

Cube cube

= new Cube () ;

private float anglex;

private float anglez;

private final int nfaces = 12;
//@0Override

//Refresh automatically as RENDERMODE_WHEN_DIRTY is not used
public void onDrawFrame (GL10 gl)

{

gl.
gl.
gl.
gl.
gl.
gl.
gl.
gl.

glClear (GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
glEnableClientState (GL10.GL_VERTEX_ARRAY) ;
glEnableClientState (GL10.GL_COLOR_ARRAY) ;

glMatrixMode (GL10.GL_MODELVIEW) ;

glLoadIdentity();

glTranslatef (0.0£f, 0.0f,
glRotatef (anglex, 1.0f,
glRotatef (anglez, 0.0f,

cube.draw(gl) ;
anglex += 1.0f;
anglez += 2.0f;
gl.glDisableClientState (GL10.GL_VERTEX_ARRAY) ;
gl.glDisableClientState (GL10.GL_COLOR_ARRAY) ;

-3.0f);
0.0f, 0.0f); // Rotate about =x-axis
0.0f, 1.0f); // Rotate about z-axis

public void onSurfaceChanged(GL10 gl, int width, int height)

{

public

gl.
gl.
gl.
gl.
gl.
gl.

gl.

gl.
gl.

glViewport (0, 0, width, height);
float ratio = (float) width / height;
gl.glMatrixMode (GL10.GL_PROJECTION) ;

glLoadIdentity () ;

glFrustumf (-ratio, ratio,

_11 1! lr lo);

void onSurfaceCreated (GL10 gl, EGLConfig config)

glDisable (GL10.GL_DITHER) ;
glHint (GL10.GL_PERSPECTIVE_CORRECTION_HINT, GL10.GL_FASTEST);
glClearColor(1, 1, 1, 0);
glEnable (GL10.GL_CULL_FACE) ;

glShadeModel (GL10.GL_SMOOTH) ;
glEnable (GL10.GL_DEPTH_TEST) ;

The renderer can be called in the onCreate() method. Since we do not use DIRTY mode, the
thread will automatically invoke onDrawFrame() at a certain frame rate.

public class MainActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {

22 Displaying Images

super.onCreate (savedInstanceState);

// Create our Preview view and set it as the content of our
// Activity

mGLSurfaceView = new GLSurfaceView (this);
CubeRendererl renderer = new CubeRendererl ();
mGLSurfaceView.setRenderer (renderer) ;
setContentView (mGLSurfaceView) ;

4.6 Rendering a 3D Texture Cube
4.6.1 Displaying Images

Before discussing putting textures on the surfaces of an object, we discuss very briefly how to
display images.

Android runs on a variety of devices with different screen sizes and resolutions, and sup-
ports the three common image formats PNG, JPG, and GIF. Images are saved in the directory
res/layout/drawable.

As an example, let’s create a project called displayimage and package graphics.displayimage
using Eclipse IDE with its Blank Activity as we did above. Under the directory res, we can find
the drawable subdirectories:

drawable-hdpi
drawable-ldpi
drawable-mdpi
drawable-xhdpi
drawable-xxhdpi

which correspond to different screen sizes and resolutions. In the naming convention of the sub-
directories, letter ‘h’ refers to high resolution, ‘m’ to medium, ‘I’ to low, and ‘x’ to extra. So
xhdpi means extra high resolution. Image file names should be lowercase and contain only letters,
numbers, and underscores. Figure 4-5, obtained from the official Android web site, illustrates how
Android roughly maps actual sizes and pixel densities to generalized sizes and resolutions.

Actual size (inches) 2 4 7 10
Generalized sizre L— L . —
L. - L — —
small large
normal xlarge

Actual density (dpi) 100 200 300
Generalized density — ‘— 0—— — —— B

ldpi ———— hdpi —_—

mdpi xhdpi

Figure 4-5 Android Screen Sizes and Resolutions

Supporting various screen resolutions allows us to create images at different dpi (dots per inch) to
enhance the appearance of our application.

In our example, we want to display an image saved in the file galaxy.jpg, which is downloaded
from the NASA web site and is an image of the galaxy. To achieve this, we first copy this file to

Chapter 4 Android Graphics and OpenGL ES 1.X 23

the directory res/drawable-hdpi, which also contains the icon file ic_launcher.png. (Alternatively,
we can create a directory named drawable inside res and put the image file there.) Then we
add the below ImageView layout component, the base element used for displaying images, to the

RelativeLayout component of the file activity_main.xml, which is in the directory res/layout, after
the TextView:

<ImageView
android:id="@+id/galaxy_image"
android:src="Q@drawable/galaxy"
android:layout_width="fill parent"
android:layout_height="fill_parent" />

In the file MainActivity.java, which is generated by Eclipse and contains the class MainActivity,
we add an image import statement and in the method onCreate the ImageView statement:

import android.widget.ImageView;

public class MainActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
//Added statement for displaying image
ImageView image = (ImageView) findViewById(R.id.galaxy_image);

}

When we compile and run the program, we will see the galaxy image displayed on the Android
screen as shown in Figure 4-6 (a) below.

@ 5556:5Dcard

L] 5554:SDcard

-
&l di 1age

s

) @ ® Gmage | @ ®

(a) (b)
Figure 4-6 Output of displayimage

24 Rendering Texture Square

If we want to change to another image, say, catherine.jpg, we can use the setlmageResource
method of the class ImageView to load this new image. So we add a statement in the file MainAc-
tivity.java:

public class MainActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
//Added statement for displaying image
ImageView image = (ImageView) findViewById(R.id.galaxy_image);
//Change to another image
image.setImageResource (R.drawable.catherine);

}

The output is shown in Figure 4-6 (b).
Alternatively, we can use bitmap to change the display of an image:

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
ImageView image = (ImageView) findViewById(R.id.galaxy_image);
Bitmap bitmap = BitmapFactory.decodeResource (this.getResources(),
R.drawable.catherine) ;
image.setImageBitmap (bitmap);

}

In the code, the BitmapFactory class creates a bitmap object with the image catherine. jpg,
which is saved in the directory res/drawable-hdpi (or in res/drawable). We use the method Im-
ageView.setiImageBitmap() to update the ImageView component.

4.6.2 Rendering Texture Square

Texture mapping is the mapping of a separately defined graphics image, a picture, or a pattern to
a surface. The technique helps us to combine pixels with geometric objects to generate complex
images without building large geometric models. For example, we can apply texture mapping to
‘glue’ an image of a brick wall to a polygon and to draw the entire wall as a single polygon.

To apply texture to a surface, we need to load up an image and tell the OpenGL renderer that
the image will be used as a texture. We also need to tell the renderer where exactly onto our square
we want to “glue” it.

We use texture coordinates to specify the image, which is normalized to size 1 x 1. That is, any
point on the image lies within the range (0, 1) x (0, 1). However, an Android system considers the
upper left corner to be (0, 0) and the lower right corner to be (1, 1). On the other hand, we have set
the lower left corner of our square to (—1, —1, 1) and upper right corner to (1,1, 1). This situation
is illustrated in Figure 4-7 below.

Chapter 4 Android Graphics and OpenGL ES 1.X 25

(-1,1,1) (1,1,1)
V2 U3
Vo U1
(7177171) (1’7171)
OpenGL Object Android Image (texture)

Figure 4-7. Vertex Coordinates and Texture Coordinates

We want to make the mapping of the texture image to the square object vertices in the following
way:

t0(0,1) — vo(—1,-1,1)
t1(1,1) — v1(1,~1,1)
t2(0,0) — vo(—1,1,1)
t3(1,0) — vs(1, 1,1)

Therefore, we define and initilialize two arrays, one for vertex coordinates and one for texture
coordinates in the class Square:

class Square {

private FloatBuffer vertexBuffer; // buffer holding vertices coord
private FloatBuffer textureBuffer; // buffer holding texture coord
private float vertices[] = { // vertex coordinates
-1.0f, -1.0f, 1.0f, // v0 — bottom left
1.0£, -1.0f, 1.0f, // vl — bottom right
-1.0f£, 1.0f, 1.0f, // v2 - top left
1.0f, 1.0f, 1.0f // v3 - top right
}i
private float texture[] = { // texture coordinates
0.0f, 1.0f, // bottom left (t0)
1.0f, 1.0f, // bottom right (tl)
0.0f, 0.0f, // top left (t2)
1.0f, 0.0f, // top right (£3)

}i

}

The above code also shows that we have added the variable fextureBuffer, which works in a
way similar to the vertexBuffer.

We modify the Square constructor to initialize the buffering of texture data; we will just reuse
the variable byteBuffer. Also, we define another integer array, fexHandles to hold the handle to
the texture that we will create, and add another method, initTexture, which will be called from
the renderer in the onSurfaceCreated method. The initTexture method initializes the OpenGL
texture commands.

class Square {

26 Rendering Texture Square

private int[] texHandles = new int[1]; //holds handle to textures

public Square() {
ByteBuffer byteBuffer = ByteBuffer.allocateDirect (vertices.length«4);
byteBuffer.order (ByteOrder.nativeOrder());
vertexBuffer = byteBuffer.asFloatBuffer();
vertexBuffer.put (vertices);
vertexBuffer.position(0);

byteBuffer = ByteBuffer.allocateDirect (texture.length * 4);
byteBuffer.order (ByteOrder.nativeOrder());

textureBuffer = byteBuffer.asFloatBuffer();
textureBuffer.put (texture);

textureBuffer.position(0);

public void initTexture(GL10 gl, Context context) ({
// loading texture
Bitmap bitmap=BitmapFactory.decodeResource (context.getResources(),
R.drawable.catherine);

// generate one texture handle

gl.glGenTextures (1, texHandles, 0);

// ...and bind it to our array

gl.glBindTexture (GL10.GL_TEXTURE_2D, texHandles([0]);

// create nearest filtered texture

gl.glTexParameterf (GL10.GL_TEXTURE_2D,
GL10.GL_TEXTURE_MIN_FILTER,GL10.GL_NEAREST) ;

gl.glTexParameterf (GL10.GL_TEXTURE_2D,
GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);

//Use Android GLUtils to specify a 2D texture image from bitmap

GLUtils.texImage2D (GL10.GL_TEXTURE_2D, 0, bitmap, O0);

// Clean up

bitmap.recycle();

}

The initTexture method generates a texture handle, binds it to a 2D texture array, loads the
image catherine.jgp from the the directory res/drawable-hdpi. The loaded image will be used as

the texture for subsequent operations.
The draw method of Square is slightly modified to incorporate operations of the texture:

class Square {

public void draw(GL10 gl) {
// Vertices of a front face are in counterclockwise order
gl.glFrontFace (GL10.GL_CCW) ;
gl.glColor4f(1.0£f, 1.0f, 1.0f, 1.0f);
// bind the previously generated texture
gl.glBindTexture (GL10.GL_TEXTURE_2D, texHandles[0]);

gl.glVertexPointer (3, GL10.GL_FLOAT, 0, vertexBuffer);
gl.glTexCoordPointer (2, GL10.GL_FLOAT, 0, textureBuffer);
gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ;
gl.glEnableClientState (GL10.GL_TEXTURE_COORD_ARRAY) ;

Chapter 4 Android Graphics and OpenGL ES 1.X 27

gl.glDrawArrays (GL10.GL_TRIANGLE_STRIP, 0, vertices.length / 3);

gl.glDisableClientState (GL10.GL_VERTEX_ARRAY) ;
gl.glDisableClientState (GL10.GL_TEXTURE_COORD_ARRAY) ;

The renderer class now looks like the following:

public class SquareRenderer implements GLSurfaceView.Renderer {

public float angle = 0.0f;
private Square square = new Square();
private Context context;

public SquareRenderer (Context context0)
{

context = context0;

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// Set the background frame color to grey
gl.glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
// Do not render back faces
gl.glEnable(GL10.GL_CULL_FACE);
gl.glCullFace (GL10.GL_BACK);
square.initTexture (gl, context);
gl.glEnable (GL10.GL_TEXTURE_2D);

When we run the app, we’ll see the output of Figure 4-8; the image catherine.jpg shown in
Figure 4-6 (b) has been glued on a square.

Figure 4-8 Square with Texture

28 Rendering Texture Cube

4.6.3 Rendering Texture Cube

To render a cube with texture, we simply put a texture image on each of the 6 faces (squares)
of the cube. So it is a straightforward extension of rendering a texture square discussed above.

Since we need to handle 6 images, it is more convenient to reference the images using resource
ids. The method getResources().getldentifier of the class Context returns the integer ID of an
image file in a resource directory. To use this method in our program, we need to add the following
import statement:

import android.content.res.Resources;

Suppose we have put 6 different image files (in .png or .jpg format) in the directory res/drawable-
hdpi. We can use the following code to obtain their ids:

int nFaces = 6;
int rids[] = new int[nFaces]; //resource ids
//Image filenames, omitting extension (.jpg or .png)
String img[] = {"catherine", "1lu", "galaxy", "lul", "lu2", "zhouxun"};
for (int 1 = 0; i1 < nFaces; i++){
rids[i] = context.getResources().getIdentifier(img[i] , "drawable",
context.getPackageName ()) ;

The initialization of texture operations, the loading of an image and the rendering of a face with
texture are the same as what we did in rendering a square discussed above except that now we
need 6 texture handles, 6 vertex buffers and 6 texture buffers. Listing 4-3 shows the code for the
modified cube class.

Program Listing 4-3 Class Cube with Texture

class Cube {

//6 faces

private final int nFaces = 6;

private FloatBuffer vertexBuffer[] = new FloatBuffer[nFaces];
// buffer holding the texture coordinates

private FloatBuffer textureBuffer[] = new FloatBuffer[nFaces];
private int[] texHandles = new int[nFaces];

// Coordinates of 6 cube faces

private float vertices[][] = {
{ -1.0f, -1.0f, 1.0£f, 1.0f, -1.0f, 1.0f,
-1.0£, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f}, //front
{ 1.0f, -1.0f,-1.0f, -1.0f, -1.0f, -1.0f,
1.0£, 1.0f,-1.0f, -1.0f, 1.0f, -1.0f}, //back
{ -1.0f, -1.0f,-1.0£f, -1.0f, -1.0f, 1.0f,
-1.0f, 1.0f,-1.0f, -1.0f, 1.0f, 1.0f}, //left

{ 1.0f, -1.0f, 1.0£, 1.0f, -1.0f, -1.0f,
1.0£, 1.0f£, 1.0f, 1.0f, 1.0f, -1.0f}, //right
{ -1.0f, -1.0£f,-1.0£, 1.0f, -1.0f, -1.0f,
-1.0f, -1.0£f, 1.0£, 1.0f, -1.0f, 1.0f}, //bottom
{ -1.0£ 1.0f, 1.0£, 1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f} }; //top

Chapter 4 Android Graphics and OpenGL ES 1.X 29

private float texturel[][] = {
// Mapping texture coordinates for the vertices

{ 0.0£, 1.0£, 1.0£, 1.0£f, 0.0£, 0.0f, 1.0£f, 0.0f},
{ 0.0£, 1.0£ 1.0£f, 1.0£, 0.0£, 0.0£f, 1.0£, 0.0f},
{ 0.0£, 1.0f, 1.0£f, 1.0£, 0.0£f, 0.0f, 1.0f, 0.0f},
{ 0.0£, 1.0£, 1.0£, 1.0£f, 0.0£, 0.0f, 1.0£f, 0.0f},
{ 0.0£, 1.0£, 1.0£f, 1.0£, 0.0£, 0.0£f, 1.0£, 0.0f},
{ 0.0£, 1.0f, 1.0£f, 1.0£, 0.0£f, 0.0f, 1.0£f, 0.0f} };

public Cube () {

// initialize vertex Buffer for each cube face

// argument=(# of coordinate values * 4 bytes per float)

for (int i = 0; i < nFaces; i++) // do for 6 faces

{
ByteBuffer byteBuf=ByteBuffer.allocateDirect (vertices[i].lengthx4);
byteBuf.order (ByteOrder.nativeOrder ());
// create a floating point buffer from the ByteBuffer
vertexBuffer[i] = byteBuf.asFloatBuffer();
// add the coordinates to the FloatBuffer
vertexBuffer[i] .put (vertices[i]);
// set the buffer to read the first vertex coordinates
vertexBuffer[i].position(0);

byteBuf = ByteBuffer.allocateDirect (texture[i].length x 4);
byteBuf.order (ByteOrder.nativeOrder());

textureBuffer[i] = byteBuf.asFloatBuffer();
textureBuffer[i] .put (texture[i]);

textureBuffer[i] .position (0);

public void initTexture (GL10 gl, Context context) {
// loading texture
// generate 6 texture pointers
gl.glGenTextures (nFaces, texHandles, 0);
// get resource ids of images in res/drawable-hdpi
int rids[] = new int[nFaces]; //resource ids
// image file names
String img[] = {"catherine","lu","galaxy","lul","lu2", "zhouxun"};
// Initialize texture feature for 6 (nFaces) faces
for (int i = 0; i < nFaces; i++){
rids[i] = context.getResources () .getIdentifier(img[i], "drawable",
context .getPackageName ()) ;
// loading texture
Bitmap bitmap =
BitmapFactory.decodeResource (context.getResources (), rids[i]);
gl.glBindTexture (GL10.GL_TEXTURE_2D, texHandles[i]);
// create nearest filtered texture
gl.glTexParameterf (GL10.GL_TEXTURE_2D,GL10.GL_TEXTURE_MIN_FILTER,
GL10.GL_NEAREST) ;
gl.glTexParameterf (GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER,
GL10.GL_LINEAR) ;
//Use Android GLUtils to specify a two-dimensional texture image
GLUtils.texImage2D (GL10.GL_TEXTURE_2D, 0, bitmap, O0);

30 Rendering Texture Cube

//cleanup
bitmap.recycle();

// Typical drawing routine using vertex array

public void draw (GL10 gl) {
// Vertices of a front face are in counterclockwise order
gl.glFrontFace (GL10.GL_CCW) ;

for (int i1 = 0; i < nFaces; i++) {
gl.glBindTexture (GL10.GL_TEXTURE_2D, texHandles([i]);
gl.glVertexPointer (3, GL10.GL_FLOAT, 0, vertexBuffer[i]);
gl.glTexCoordPointer (2, GL10.GL_FLOAT, 0, textureBuffer([il]);
gl.glEnableClientState (GL10.GL_VERTEX_ARRAY) ;
gl.glEnableClientState (GL10.GL_TEXTURE_COORD_ARRAY) ;

gl.glDrawArrays (GL10.GL_TRIANGLE_STRIP, 0, vertices[i].length / 3);
gl.glDisableClientState (GL10.GL_VERTEX_ARRAY) ;
gl.glDisableClientState (GL10.GL_TEXTURE_COORD_ARRAY) ;

We slightly modify the method onDrawFrame of the class CubeRenderer to display three cubes
at the same time so that we can see the six different faces when we drag the mouse to rotate them:

public class CubeRenderer implements GLSurfaceView.Renderer
{

public float angle = 0.0f;

private Cube cube = new Cube();

private Context context;

public CubeRenderer (Context context0) {
context = contextO;

public void onSurfaceCreated(GL10 gl, EGLConfig config) {
// Set the background frame color to grey
gl.glClearColor (0.5f, 0.5f, 0.5f, 1.0f);
// Do not render back faces
gl.glEnable(GL10.GL_CULL_FACE);
gl.glCullFace (GL10.GL_BACK);
cube.initTexture (gl, context);
gl.glEnable (GL10.GL_TEXTURE_2D);

public void onDrawFrame (GL10 gl) {
// Redraw background color
gl.glClear (GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT) ;
// Set GL_MODELVIEW transformation mode
gl.glMatrixMode (GL10.GL_MODELVIEW) ;
gl.glLoadIdentity(); // Reset the matrix to identity matrix

// Move objects away from view point to observe

Chapter 4 Android Graphics and OpenGL ES 1.X

gl.glTranslatef (-1.0f, 2.0f, -10.0f);
// Rotate about a diagonal of cube
gl.glRotatef (angle, 1.0f, 1.0£f, 0.0f);
// Draw the cube

cube.draw(gl) ;

gl.glLoadIdentity(); //reset matrix, draw another cube
gl.glTranslatef (0.0£f, 0.0f, -10.0f);

gl.glRotatef (angle, 0.0f, 1.0f, 1.0f);

cube.draw(gl) ;

gl.glLoadIdentity(); //reset matrix, draw another cube
gl.glTranslatef (1.0f, -2.0f, -10.0f);

gl.glRotatef (angle, -1.0f, -1.0f, 0.0f);
cube.draw(gl) ;

gl.glLoadIdentity () ; // Reset matrix

® 5554:avd4.1-intel

N "
%! cube

® =i =

Figure 4-10 Texture Cubes

32 Rendering a Rotating Cube

When we run the app, we should see on the screen 3 cubes with texture images on the faces. If we
drag the mouse, we should see the cubes rotate and appear like those showniFigure 4-10 above.

Interested readers may download the complete code of this app from the website,
http://www.forejune.com/android/

4.7 Rendering a Rotating Cube

Rotating a cube is similar to rotating a triangle that we have discussed in Section 4.4. As an
example, let us rotate the 3D color cube discussed in Section 4.5 along a diagonal of the cube
for 1° every 0.1 second. To accomplish this, we first do not set the render mode to GLSurface-
View.RENDERMODE _WHEN_DIRTY so that the frames will be updated automatically. Second,
we let the thread sleep for 0.1 second and then increment a rotation angle by 1° in the method
onDrawFrame() of the class CubeRenderer:

public void onDrawFrame (GL10 gl)
{
// Redraw background color
gl.glClear (GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT) ;
// Set GL_MODELVIEW transformation mode
gl.glMatrixMode (GL10.GL_MODELVIEW) ;
gl.glLoadIdentity(); // Reset the matrix to identity matrix

SystemClock.sleep (100); //delay for 0.1 second
angle += 1; //increment angle by 6 degrees

// Move objects away from view point to observe
gl.glTranslatef (0.0f, 0.0f, -10.0f);

// Rotate about a diagonal of cube

gl.glRotatef (angle, 1.0f, 1.0f, 1.0f);

// Draw the cube

cube.draw(gl) ;

When we run the app, we will see a color cube rotating on the screen. Figure 4-11 below shows
two frames of it.

(a) (b)
Figure 4-11 Two Frames of a Rotating Cube

Chapter 4 Android Graphics and OpenGL ES 1.X

33

	Chapter 3 Android Components and Simple Examples
	3.1 GUI Example with Eclipse IDE
	3.1.1 Using a Linear Layout
	3.1.2 Responding to Clicking
	3.1.3 Creating a New Activity

	3.2 GUI Example using Command Line
	3.3 Activity
	3.3.1 Activity and Screen
	3.3.2 A Simple Calculator

	3.4 Fragment
	3.4.1 Why Fragments?
	3.4.2 Fragment Example

	3.5 Service
	3.5.1 Android Services
	3.5.2 Local Services
	3.5.3 A Simple Local Service Example
	3.5.4 Remote Services

