Chapter 6 Graphics with OpenGL ES 2.X

6.1 Programmable Pipeline

As we have mentioned in Chapter 4, OpenGL ES is an application programming interface (API)
for advanced 3D graphics targeted for embedded devices such as cell phones, digital health kits,
and tablets. It consists of well-defined subsets of desktop OpenGL, including profiles for floating-
point and fixed-point systems and the EGL specification for portability that binds native window-
ing systems. (EGL (Embedded Graphics Library) is a native platform graphics interface between
Khronos rendering APIs such as OpenGL ES or OpenVG and the underlying native window sys-
tem.) The API is created and maintained by the Khronos Group, which is a member-funded indus-
try consortium founded in January 2000, focusing on the creation of open standard and royalty-free
APIs for embedded devices.

OpenGL ES 1.X is based on the traditional fixed pipeline graphics architecture, in which the
functionality of each processing stage is fixed. It offers acceleration, image quality and perfor-
mance. OpenGL ES 2.X supports fully programmable pipeline architecture, a trend in graphics
hardware, for creating 3D graphics. In ES 2.X, one can use the OpenGL Shading Language (glsl)
to write vertex shaders and fragment shaders. For details of the APIs, one can refer to the Web
site,

http://www.khronos.org/opengles/2_X/

Android supports both OpenGL ES 1.X and OpenGL ES 2.X. Figure 6-1 below shows the tra-
ditional fixed function pipeline architecture of OpenGL used by OpenGL ES 1.X.

Primitive | Vertices ,/_\

Transform, ™\ Primitive
Processing _ Lighting / Assembly

~_ =
API #

Vertex

{ Environment }—#»{ -

3

Objects \ Sum /
) S~ N S N

Triangles/Lines/Points

- Rasterizer

/Alp%1 Depth Color

e Buffer [Dither

{) :
\Teist/ Stencil Blend

Figure 6-1. Fixed Function Pipeline

OpenGL ES 2.X does not support this fixed pipeline architecture. Its programmable pipeline
replaces the fixed function transformation and fragment pipeline of OpenGL 1.X as shown in
Figure 6-2 below.

OpenGL ES 2.0 is defined relative to the OpenGL 2.0 specification, emphasizing a programmable
3D graphics pipeline that allows users to create shader and program objects and to write vertex

1

2 OpenGL Shaders Execution Model

and fragment shaders using OpenGL Shading Language (glsl). It combines a glsl version for
programming vertex and fragment shaders that has been adapted for embedded platforms, with a
streamlined API from OpenGL ES 1.1 with the fixed functionality replaced by shader programs.
This helps minimize the cost and power consumption of advanced programmable graphics subsys-
tems.

Triangles/Lines/Points

Y

Primitive | Vertices //V’e;tex\\ Primitive
A S T o
Processing Shader Assembly

API *
Vertex /i\
Buffer

/7 Fragment ™\

)—

Objects @

Y

- Rasterizer

—

Depth Color
PR 1 gl Buffer || Dither
Stencil

Blend

Figure 6-2. ES 2.X Programmable Pipeline

6.2 OpenGL Shading Language (GLSL)

Before we discuss using OpenGL ES 2.X to write graphics applications in Android, we give a
brief introduction to OpenGL Shading Language (glsl), a C-like language with some C++ features
designed for 3D graphics programming. It is part of OpenGL and thus can be naturally integrated
with OpenGL programs with ease. The language is mainly used for processing numerics, but not
for strings or characters.

6.2.1 OpenGL Shaders Execution Model

We can consider a driver as a piece of software that manages the access of a hardware. In this
sense, we can view OpenGL libraries as drivers because they manage shared access to the under-
lying graphics hardware and applications communicate with graphics hardware by calling OpenGL
functions. An OpenGL shader is embedded in an OpenGL application and may be viewed as an
object in the driver to access the hardware. We use the command glCreateShader() to allocate
within the OpenGL driver the data structures needed to store an OpenGL shader. The source code
of a shader is provided by an application by calling glShaderSource() and we have to provide
the source code as a null-terminated string to this function. Figure 6-3 below shows the steps to
create a shader program for execution.

As shown in Figure 6-2, there are two kinds of shaders, the vertex shaders and the fragment
shaders. A vertex shader (program) is a shader running on a vertex processor, which is a pro-
grammable unit that operates on incoming vertex values. This processor usually performs tradi-
tional graphics operations including the following:

1. vertex transformation

Chapter 6 Graphics with OpenGL ES 2.X 3

normal transformation and normalization
texture coordinate generation

texture coordinate transformation
lighting

color material application

AN

null-terminated
string

null-terminated
string

Figure 6-3 Shader Program Development

The following is an example of a simple “pass-through” vertex shader which does not do any-
thing.

//A simple pass—-through vertex shader
void main ()
{
gl_Position=gl_ProjectionMatrix*gl_ModelViewMatrixxgl_Vertex;

}

A shader program must pass a null-terminated string to the OpenGL function glShaderSource(),
which is then compiled and linked with the rest of the application by other glsl commands as shown
in Figure 6-3.

A fragment shader is a shader running on a fragment processor, which is a programmable
unit that operates on fragment values. A fragment is a pixel plus its attributes such as color and
transparency. A fragment shader is executed after the rasterization. Therefore a fragment processor
operates on each fragment rather than on each vertex. It usually performs traditional graphics
operations including:

1. operations on interpolated values
2. texture access

4 OpenGL Shading Language API

texture application

fog effects

color sum

pixel zoom

scaling

color table lookup
convolution

color matrix operations

SO AW

—

The following is an example of a simple fragment shader, which sets the color of each fragment
for render.

//A simple fragment shader
void main ()
{

gl_FragColor = gl_FrontColor;
}

6.2.2 OpenGL Shading Language API

Figure 6-3 above shows the development steps of a glsl shader program. The following table lists
the OpenGL functions involved in the process.

Table 6-1 OpenGL Commands for Embedding Shaders
glCreateShader() Creates one or more shader objects.
glShaderSource() Provides source codes of shaders.
glCompileShader() | Compiles each of the shaders.
glCreateProgram() | Creates a program object.
glAttachShader() Attach all shader objects to the program.
glLinkProgram() Link the program object.
glUseProgram() Install the shaders as part of the OpenGL program.

The following discusses the usual steps to develop an OpenGL shader program.
1. Creating a Shader Object

We first create an empty shader object using the function glCreateShader, which has
the following prototype:

Gluint glCreateShader (GLenum shaderType)

Creates an empty shader.

shaderType specifies the type of shader to be created. It can be either GL_.VERTEX_SHADER
or GL_LFRAGMENT_SHADER.

Return: A non-zero integer handle for future reference.

2. Providing Source Code for the Shader

We pass the source code to the shader as a null-terminated string using the function
glShaderSource which has the prototype:

void glShaderSource (GLuint shader, GLsizei count, const GLchar **string, const GLint
*lengthp)

Chapter 6 Graphics with OpenGL ES 2.X 5

Defines a shader’s source code.

shader is the shader object created by glCreateShader().

string is the array of strings specifying the source code of the shader.

count is the number of strings in the array.

lengthp points to an array specifying the lengths of the strings. If NULL, the strings are NULL-
terminated.

The source code can be hard-coded as a string in the OpenGL program or it can be
saved in a separate file and read into an array as a null-terminated string, which ends
with the null character ‘\0’.

3. Compiling Shader Object

We use the function glCompileShader to compile the shader source code to object
code. This function has the following prototype.

void glCompileShader (GLuint shader)
Compiles the source code strings stored in the shader object shader.
The function glShaderInfoLog gives the compilation log.

4. Linking and Using Shaders

Each shader object is compiled independently. To create a shader program, we need to
link all the shader objects to the OpenGL application. These are done within the C/C++
application using the functions glCreateProgram, glAttachShader, glLinkProgram,
and glUseProgram, which have the prototypes listed below. These are done while we
are running the C/C++ application. Performing the steps of compiling and linking
shader objects are simply making C function calls.

GLuint glCreateProgram (void)
Creates an empty program object and returns a non-zero integer handle for future reference.

void glAttachShader (GLuint program, GLuint shader)
Attaches the shader object specified by shader to the program object specified by program.

void glLinkProgram (GLuint program)
Links the program objects specified by program.

void glUseProgram (GLuint program)

Installs the program object specified by program as part of current rendering state.

If program is 0, the programmable processors are disabled, and fixed functionality is used for
both vertex and fragment processing.

5. Cleaning Up

At the end, we need to release all the resources taken up by the shaders. The clean up
is done by the commands,

6 OpenGL Shading Language API

void glDeleteShader (GLuint shader),
void glDeleteProgram (GLuint program),
void glDetachShader (GLuint program, GLuint shader).

Listing 6-1 below is a complete example of a shader program; the OpenGL application is the
C/C++ program shaderdemo.cpp, which does the shader creation, reading shader source code,
shader compilation and shader linking. The shader source codes are hard-coded in the program. In
compiling shaderdemo.cpp, we need to link the GL extension library by “-IGLEW”. If we com-
pile “shaderdemo.cpp” to the executable “shaderdemo”, we can run the shader program by typing
“./shaderdemo” and press ‘Enter’.

Program Listing 6-1 Complete Example of a Shader Program

shaderdemo.cpp

/ *
shaderdemo. cpp

Sample program showing how to write GL shader programs.
*/

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <GL/glew.h>

#include <GL/glut.h>

using namespace std;

/ *
Global handles for the currently active program object,
with its two shader objects

*/

GLuint programObject = 0;

GLuint vShader = 0;

GLuint fShader = 0;

static GLint win = 0;

// String defining vertex shader
char vertexStr[] =" \

//a minimal vertex shader \n \
void main (void) \
{ \
gl_Position = gl_ModelViewProjectionMatrix » gl_Vertex; \
} \

// String for fragment shader
char fragmentStr[] = " \
//a minimal fragment shader \n \
void main (void) \
{ \

gl_FragColor = vec4(1, 0, 0, 1);
\

Chapter 6 Graphics with OpenGL ES 2.X

int readShaderSource(char strl[], GLchar *xshader)

{

// Allocate memory to hold the source of our shaders.
int shaderSize;

shaderSize = strlen (str);

if (shaderSize <= 0){
printf ("Shader string empty\n");
return 0;
}
// Allocate memory for shader
*shader = (GLchar %) malloc(shaderSize + 1);

// Read the source code
strcpy (*shader, str);

return 1;

int installShaders (const GLchar =xvertex, const GLchar xfragment)

{

GLint vertCompiled, fragCompiled; // status values
GLint linked;

// Create a vertex shader object and a fragment shader object
vShader = glCreateShader (GL_VERTEX_SHADER) ;
fShader = glCreateShader (GL_FRAGMENT_SHADER) ;

// Load source code strings into shaders, compile and link
glShaderSource (vShader, 1, &vertex, NULL);
glShaderSource (fShader, 1, &fragment, NULL);

glCompileShader (vShader) ;

glGetShaderiv (vShader, GL_COMPILE_STATUS, &vertCompiled);
glCompileShader (fShader);

glGetShaderiv (fShader, GL_COMPILE_STATUS, &fragCompiled);

if (!vertCompiled || !fragCompiled)
return 0;

// Create a program object and attach the two compiled shaders
programObject = glCreateProgram();

glAttachShader (programObject, wvShader);

glAttachShader (programObject, fShader);

// Link the program object
glLinkProgram(programObject) ;
glGetProgramiv (programObject, GL_LINK_STATUS, &linked);

if (!linked)

return 0;
// Install program object as part of current state
glUseProgram (programObject) ;

OpenGL Shading Language API

return 1;

int init (void)

{
const char xversion;
GLchar #*vShaderSource, xfShaderSource;
int loadstatus = 0;

version = (const char) glGetString(GL_VERSION) ;
I=7.") |

if (version[0] !'= 2" || version[l]
printf ("This program requires OpenGL 2.x, found %s\n", version);
exit (1);

}

readShaderSource (vertexStr, &vShaderSource);
readShaderSource (fragmentStr, &fShaderSource);
loadstatus = installShaders (vShaderSource, fShaderSource);

return loadstatus;

static void reshape (int width, int height)

{
glviewport (0, 0, width, height);
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 25.0);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
glTranslatef (0.0f, 0.0f, -15.0f);

void cleanUp (void)

{
glDeleteShader (vShader);
glDeleteShader (fShader);
glDeleteProgram (programObject);
glutDestroyWindow (win);

static void idle (void)

{
glutPostRedisplay () ;

static void keyPressed (unsigned char key, int x, int y)
{
switch (key) {
case 27:
cleanUp () ;
exit (0);
break;
}
glutPostRedisplay () ;

Chapter 6 Graphics with OpenGL ES 2.X

void display (void)
{
GLfloat vec[4];

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

glClearColor(1.0, 1.0, 1.0, 0.0); //get white background color
glColor3f(0, 1, 0); //green, have no effect if shader is loaded
glLineWidth (3);

glutWireSphere (2.0, 12, 6);

glutSwapBuffers();

glFlush();

int main(int argc, char =xargv[])
{

int success = 0;

glutInit (&argc, argv);
glutInitWindowPosition(0, 0);
glutInitWindowSize (200, 200);
glutInitDisplayMode (GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH) ;
win = glutCreateWindow (argv[0]);
glutReshapeFunc (reshape) ;
glutKeyboardFunc (keyPressed);
glutDisplayFunc (display) ;
glutIdleFunc (idle);
// Initialize the "OpenGL Extension Wrangler" library
glewInit ();
success = init ();
if (success)
glutMainLoop () ;
return 0;

/ ./shaderdemo - O x

Figure 6-4 Output of Shader Program shaderdemo.cpp

10 Data Types in GLSL

6.2.3 Data Types in GLSL

There are four main data types in GLSL: float, int, bool, and sampler. Vector types are available
for the first three types:

vec2, vec3, vecd 2D, 3D and 4D floating point vector
ivec2, ivec3, ivecd 2D, 3D and 4D integer vector
bvec2, bvec3, bvecd | 2D, 3D and 4D boolean vectors

For floats there are also matrix types:

| mat2, mat3, matd | 2 x 2,3 x 3,4 x 4 floating point matrix |

Samplers are types used for representing textures:

sampler1D, sampler2D, sampler3D 1D, 2D and 3D texture
samplerCube Cube Map texture
sampler1Dshadow, sampler2Dshadow | 1D and 2D depth-component texture

Attributes, Uniforms and Varyings

GLSL shaders have three different input-output data types for passing data between vertex
and fragment shaders, and the OpenGL application. The data types are uniform, attribute and
varying. They must be declared as global (visible to the whole shader object). The variables have
the following properties:

1. Uniforms : These are read-only variables (i.e. A shader object can only read the variables
but cannot change them.). Their values do not change during a rendering. Therefore, Uni-
form variable values are assigned outside the scope of glBegin/glEnd. Uniform variables are
used for sharing data among an application program, vertex shaders, and fragment shaders.

2. Attributes: These are also read-only variables. They are only available in vertex shaders.
They are used for variables that change at most once per vertex in a vertex shader. There
are two types of attribute variables, user-defined and built-in. The following are examples
of user-defined attributes:

attribute float x;
attribute vec3 velocity, acceleration;

Built-in variables include OpenGL state variables such as color, position, and normal; the
following are some examples:

gl_Vertex
gl_Color

3. Varyings: These are read/write variables, which are used for passing data from a vertex
shader to a fragment shader. They are defined on a per-vertex basis but are interpolated over
the primitive by the rasterizer. They can be user-defined or built-in.

Built-in Types

The following tables list some more of the GLSL built-in types.

Chapter 6 Graphics with OpenGL ES 2.X 11

Table D-2 Built-in Attributes (for Vertex Shaders)

gl_Vertex 4D vector representing the vertex position

gl_Normal 3D vector representing the vertex normal

gl_Color 4D vector representing the vertex color

gl MultiTexCoordn | 4D vector representing the texture coordinate of texture n

Table D-3 Built-in Uniforms (for Vertex and Fragment Shaders)

gl_ModelViewMatrix 4 x 4 Matrix representing the model-view matrix
gl_ModelViewProjectionMatrix | 4 x 4 Model-view-projection matrix
gl_NormalMatrix 3 x 3 Matrix used for normal transformation

Table D-4 Built-in Varyings (for Data Sharing between Shaders)
gl_FrontColor 4D vector representing the primitives front color

gl_BackColor 4D vector representing the primitives back color

gl_TexCoord[n] | 4D vector representing the n-th texture coordinate

gl_Position 4D vector representing the final processed vertex position
(vertex shader only)

gl_FragColor 4D vector representing the final color written in the frame

buffer (fragment shader only)
gl_FragDepth float representing the depth written in the depth buffer
(fragment shader only)

GLSL has many built in functions, including

trigonometric functions: sin, cos, tan

inverse trigonometric functions: asin, acos, atan
mathematical functions: pow, log2, sqrt, abs, max, min
geometrical functions: length, distance, normalize, reflect

L=

The following is an example of using various data types; it consists of a vertex shader and a
fragment shader for defining a modified Phong lighting model.

Program Listing 6-2 Shaders for Modified Phong Lighting

(a) Vertex Shader: phong.vert

//phong.vert

varying vec3 N; //normal direction
varying vec3 L; //light source direction
varying vec3 E; //eye position

void main (void)

{
gl_Position =gl_ModelViewMatrixxgl_Vertex;
vecd eyePosition = gl_ModelViewProjectionMatrix*gl_Vertex;
vecd4 eyelightPosition = gl_LightSource[0].position;

N = normalize(gl_NormalMatrixxgl_Normal);
L eyeLightPosition.xyz - eyePosition.xyz;
E —eyePosition.xyz;

12 Drawing a Triangle

(b) Fragment Shader: phong.frag

//phong. frag

varying vec3 N;
varying vec3 L;
varying vec3 E;

void main ()
{
vec3 norm = normalize (N);
vec3 lightv = normalize (L) ;
vec3 viewv normalize (E);
vec3 halfv = normalize(lightv + viewv);
float £;
if (dot (lightv, norm)>= 0.0) f =1.0;
else £ = 0.0;

float Kd = max (0.0, dot(lightv, norm));

float Ks = pow(max (0.0, dot (norm, halfv)), gl_FrontMaterial.shininess);
vecd diffuse = Kd x gl_FrontMaterial.diffusexgl_LightSource[0].diffuse;
vecd4 ambient = gl_FrontMaterial.ambientxgl_LightSource[0].ambient;

vecd4 specular = f*xKsxgl_FrontMaterial.specular*gl_LightSource[0].specular;
gl_FragColor = ambient + diffuse + specular;

6.3 Android Graphics with ES 2.0

6.3.1 Drawing a Triangle

The android.opengl. GLES20 package provides the interface to OpenGL ES 2.0, which supports
OpenGL Shader Library APIs. In earlier days, android emulator did not support this feature and
one had to use a real android device to test its code in the development process. However, newer

emulator versions begin to support ES 2.0.
To use the OpenGL ES 2.0 API, we have to add the following declaration in the manifest file,
AndroidManifest.xml:

<uses-feature android:glEsVersion="0x00020000" android:required="true" />

If our application uses texture compression, we also need to declare which compression formats
we support so that devices that do not support theses formats will not run the application:

<supports-gl-texture android:name="GL_OES_compressed_ETCl_RGB8_texture" />
<supports—-gl-texture android:name="GL_OES_compressed_paletted_texture" />

The following steps walk you through the process of creating an android glsl application, which
simply draws a magenta triangle. Suppose we use Eclipse IDE in the development process. We
call our project and application GislI, and the package opengl.glsli. In the example, the vertex
and fragment shaders are hard-coded as null-terminated strings in the program:

1. In Eclipse IDE, click File > New > Android Application Project (You may need to click
Poject .. first if your Eclipse has been setup differently.). The New Android Application
diaglog shows up.

Chapter 6 Graphics with OpenGL ES 2.X 13

2. Enter Glisli, Glsli, and opengl.glsll for the names of application, project, and package
respectivley. You may use defaults for other features for selection. Then click Next > Next
> Next and Next.

3. You may use the default names MainActivity and activity_main for the names of Activity
and Layout. Then click Finish to create the project Gls/1.

4. In the base directory GlslI, you can find the xml file, AndroidManifest.xml, which presents
essential information about the app to the Android system. Add the following statement to
this file:

<uses-feature android:glEsVersion="0x00020000" android:required="true” />
which tells the system that the app requires OpenGL ES 2.0. You may add the statement
before the < application > element in the file.

5. Modify the main program MainActivity.java in the subdirectory src/opengl/glsli to the fol-
lowing, which along with comments is self-explained:

package opengl.glsll;

import android.app.Activity;

import android.content.Context;
import android.opengl.GLSurfaceView;
import android.os.Bundle;

public class MainActivity extends Activity {
private GLSurfaceView glView;

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
// Create a GLSurfaceView instance and set it
// as the ContentView for this Activity.
glView = new MyGLSurfaceView(this);
setContentView (glView) ;

class MyGLSurfaceView extends GLSurfaceView {

public MyGLSurfaceView (Context context) {
super (context) ;
// Create an OpenGL ES 2.0 context
setEGLContextClientVersion (2);

public MyGLSurfaceView (Context context) {
super (context) ;
// Create an OpenGL ES 2.0 context
setEGLContextClientVersion (2);
// Render the view only when there is a change in the drawing data
// Set the Renderer for drawing on the GLSurfaceView
setRenderer (new MyRenderer());

14

Drawing a Triangle

6. Create a new class by clicking File > New > Class. Enter MyRenderer for the name and
use defaults for other entries. This creates the class file src/opengl/glsll/MyRenderer.java.
Modify this file to the following:

package opengl.glsll;

import android.opengl.GLES20;

import android.opengl.GLSurfaceView;

import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

public class MyRenderer implements GLSurfaceView.Renderer {

private Triangle triangle;
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
// Set the background frame color
GLES20.glClearColor(0.9f, 0.9f, 0.9f, 1.0f);
// construct a triangle object
triangle = new Triangle();

public void onDrawFrame (GL10 unused) {
// Redraw background color
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT) ;
triangle.draw() ;

public void onSurfaceChanged (GL10 unused, int width, int height) {
GLES20.glViewport (0, 0, width, height);

This class renders a Triangle object, which is defined in the next step.

7. Create another new class by clicking File > New > Class. Enter Triangle for the name

and use defaults for other entries. This creates the class file src/opengl/glsll/Triangle.java.
Modity this file to the following:

package opengl.glsll;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

import android.opengl.GLES20;

public class Triangle {
// Source code of vertex shader
private final String vsCode =
"attribute vec4 vPosition;" +
"void main () {" +
" gl_Position = vPosition;" +

Chapter 6 Graphics with OpenGL ES 2.X 15

ll}ll,.

// Source code of fragment shader
private final String fsCode =
"precision mediump float;" +
"uniform vecd4 vColor;" +
"void main () {" +
" gl_FragColor = vColor;" +

'l}ll,.

private int program;

private int vertexShader;

private int fragmentShader;
private FloatBuffer vertexBuffer;
private int vertexCount = 3;

// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;
static float triangleCoords[] = { // in counterclockwise order:
0.0£, 0.9f, 0.0f, // top vertex
-0.5f, 0.1f, 0.0f, // bottom left
0.5£, 0.1f, 0.0f // bottom right
}i

// Set color of displaying object
// with red, green, blue and alpha (opacity) values
float color[] = { 0.9f, 0.1f, 0.9f, 1.0f };

// Create a Triangle object

Triangle () {
// create empty OpenGL ES Program, load, attach,and link shaders
program = GLES20.glCreateProgram() ;
vertexShader = loadShader (GLES20.GL_VERTEX_SHADER, vsCode);
fragmentShader = loadShader (GLES20.GL_FRAGMENT_SHADER, fsCode);
// add the vertex shader to program
GLES20.glAttachShader (program, vertexShader) ;
// add the fragment shader to program
GLES20.glAttachShader (program, fragmentShader) ;
GLES20.glLinkProgram(program); //creates ES program executables
GLES20.glUseProgram(program); //use shader program

//initialize vertex byte buffer for shape coordinates with

// paramters (number of coordinate values * 4 bytes per float)
//use the device hardware’s native byte order

ByteBuffer bb=ByteBuffer.allocateDirect (triangleCoords.lengthx4);
bb.order (ByteOrder.nativeOrder());

// create a floating point buffer from the ByteBuffer
vertexBuffer = bb.asFloatBuffer();

// create a floating point buffer from the ByteBuffer
vertexBuffer = bb.asFloatBuffer();

// add the coordinates to the FloatBuffer
vertexBuffer.put (triangleCoords) ;

// set the buffer to read the first coordinate
vertexBuffer.position(0);

16 Drawing a Triangle

} //Triangle Constructor
public static int loadShader (int type, String shaderCode) {

// create a vertex shader type (GLES20.GL_VERTEX_SHADER)
// or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
int shader = GLES20.glCreateShader (type);

// pass source code to the shader and compile it
GLES20.glShaderSource (shader, shaderCode);
GLES20.glCompileShader (shader) ;

return shader;

public void draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram (program) ;

//get handle to vertex shader’s attribute variable vPosition
int positionHandle=GLES20.glGetAttribLocation (program,
"vPosition");

// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray (positionHandle) ;

// Prepare the triangle coordinate data
GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, 0, vertexBuffer);

// get handle to fragment shader’s uniform variable vColor
int colorHandle=GLES20.glGetUniformLocation (program, "vColor");

// Set color for drawing the triangle
GLES20.glUniformé4fv (colorHandle, 1, color, 0);

// Draw the triangle
GLES20.glDrawArrays (GLES20.GL_TRIANGLES, 0, vertexCount);

// Disable vertex array
GLES20.glDisableVertexAttribArray (positionHandle);

This class draws a color triangle using a vertex shader and a fragment shader. The color is
defined in the class by the array color[] and its values are passed to the fragment shader via
the uniform variable vColor, which is a vec4 defined in the fragment shader. The coordinates
of the vertices of the triangle are defined by the array triangleCoords[] and stored in the byte
buffer vertexBuffer. These values are passed to the vertex shader via the attribute variable
vPosition, which is a vec4 defined in the vertex shader.

The strings vsCode and fsCode defines the vertex shader and the fragment shader respec-
tively. If we remove the quotes and the operator + in defining the strings, we can see that
the codes of our vertex shader and fragment shader are:

Chapter 6 Graphics with OpenGL ES 2.X 17

// Source code of vertex shader
attribute vec4 vPosition;
void main () {

gl_Position = vPosition;

}

// Source code of fragment shader
precision mediump float;
uniform vec4 vColor;
void main () {
gl_FragColor = vColor;
}

Note that the keyword precision is used to specify the precision of any floating-point or
integer-based variable. Keywords lowp, mediump, and highp are used to specifiy low,
medium, and high precisions respectively.

8. Run the application by clicking Run > Run > Android Application > OK. We should
see an output like the one shown in Figure 6-5, displaying a magneta triangle over a grey
background. The color of the triangle is passed from the array variable color in the graphics
application to the fragment shader uniform variable vColor, which sets the triangle color.

=
&l Glsh

Figure 6-5 Output of Project Glsi1

Not all avd emulator configurations can run OpenGL ES 2.X. Figure 6-6 shows one of the avd
configurations that we have used and works, which requires API level 16. It seems that for the
emulator to work, a high screen resolution device needs to be chosen.

18 Shaders in Files

8 Edit Android Virtual Device (AVD) x
AVD Name: |avd-4.1.2 |
Device: | Nexus 7 (7.02", 1200 x 1920: xhdpi) = |
Target: | Android 4.1.2 - API Level 16 2|
CPU/ABI:

Keyboard: Hardware keyboard present
skin: | No skin 2 |
Front Camera: | None 2
Back Camera: | None z |
Memory Options: | RAM: (1024 VM Heap:
Internal Storage: lEDD] | MiB | £ |
SD Card: I .
@ Size: [200] |MiB | & |
) File:
Emulation Options: |] Snapshot Use Host GPU

Figure 6-6 An avd Emulator Configuration That Runs ES 2.X

6.3.2 Shaders in Files

In the above example, we have hard-coded the shaders in the class Triangle. It will be difficult to
comprehend the hard-coded code when the shaders become complex. A better way to write the
shaders is to handle them separately, saving them in separate files; we then read the codes from
the files as null-terminated strings, passing them as input parameters to the function glShader-
Source(). We discuss this method here, repeating the above example except that we save the
shaders in raw data format that we have discussed in Chapter 5.

Suppose we call the project of this example Gls/IRaw and we have created all the classes of the
project Glsl1 above and have added the uses-features element to the file AndroidManifest.xml to
use ES 2.0. The following are the additional steps required to finish this project. Besides reading
the shader codes from the raw files, the main difference from before is that we pass the context
handle of the main activity to the rendering class so that the class can access the raw files.

1. Click File > New > Folder. Enter GlsIRaw/res for parent folder and raw for folder name.
Click Finish to create the directory res/raw.

2. Click on the folder raw in the Package Explorer. Then click File > New > File. Enter
vshader to create the file res/raw/vshader, which will be our vertex shader program. Simi-
larly, create another file, res/raw/fshader, which will be our fragment shader program.

Chapter 6 Graphics with OpenGL ES 2.X 19

3. Write vshader with the vertex shader code:

// Source code of vertex shader
attribute vec4 vPosition;
void main () {

gl_Position = vPosition;

4. Write fshader with the fragment shader code:

// Source code of fragment shader
precision mediump float;

uniform vecd4 vColor;

void main () {

gl_FragColor = vColor;

5. The only change to the above file MainActivity.java is to pass the context to the renderer by
modifying the setRenderer statement to:
setRenderer(new MyRenderer (context));

6. The file MyRenderer.java is almost the same as above. We use a new constructor to save
the context of the thread that creates the object and pass this context handle to the Triangle
object to access the raw files:

public class MyRenderer implements GLSurfaceView.Renderer {
private Triangle triangle;
private Context context;

public MyRenderer (Context contextO) {

context = contextO;

public void onSurfaceCreated(GL10 unused, EGLConfig config) {

// Set the background frame color
GLES20.glClearColor(0.9f, 0.9f, 0.9f, 1.0f);
// construct a triangle object

triangle = new Triangle(context);

7. The main change to Triangle.java is to read the vertex and fragment shaders codes from the
files res/raw/vshader and res/raw/fshader respectively. Other features remain the same as

above:

public class Triangle

{
private
private
private
private
private
private
private

static String LOG_APP_TAG = "io_tag";
Context context;

String vsCode = null;

String fsCode = null;

int program;

int vertexShader;

int fragmentShader;

20 Animation

// Constructor
Triangle (Context contextO) {

context = contextO;

// get shader codes from res/raw/vshader and res/raw/fshader

vsCode = getShaderCode(GLES20.GL_VERTEX_SHADER) ;

fsCode = getShaderCode (GLES20.GL_FRAGMENT_SHADER);

program = GLES20.glCreateProgram(); // create empty OpenGL ES Program

vertexShader = loadShader (GLES20.GL_VERTEX_SHADER, vsCode);
fragmentShader = loadShader (GLES20.GL_FRAGMENT_SHADER, fsCode);
GLES20.glAttachShader (program, vertexShader);
GLES20.glAttachShader (program, fragmentShader);
GLES20.glLinkProgram(program) ;

GLES20.glUseProgram(program) ;

// get shader code from file

protected String getShaderCode(int type) {
InputStream inputStream = null;
String str = null;

try {
if (type == GLES20.GL_VERTEX_SHADER)
inputStream=context.getResources () .openRawResource (R.raw.vshader) ;
else
inputStream=context.getResources () .openRawResource (R.raw. fshader);
byte[] reader = new byte[inputStream.available()];;
while (inputStream.read(reader) != -1) {}
str = new String (reader);

} catch(IOException e) {
Log.e (LOG_APP_TAG, e.getMessage());
}

return str;

When we run the application, we will get the same output as the previous example, which is shown
in Figure 6-5.
From now on we will always put our shaders in the files res/raw/vshader and res/raw/fshaer.

6.3.3 Animation

We can easily do animation using glsl by passing a time parameter from the main OpenGL program
to the shaders. The time parameter can be used to control the positions, orientations and other
attributes of the graphics objects.

We consider a simple example where we display a color triangle expanding, shrinking, flip-
ping and changing color. Suppose we call this project GlslAnimate, and have created or modified
all the files used in the above project GlsIRaw, including MainActivityjava, MyRendererjava,
Triangle.java, vshader, fshader, and AndroidManifest.xml except that now our package name is
opengl.glslanimate. We need to do some modifications to the files to accomplish animation:

Chapter 6 Graphics with OpenGL ES 2.X

21

1. The file MainActivity.java is the same as before; we do not need to make any modification
besides changing the package name.

2. For MyRenderer, we need to pass the elapsed time between rendering frames to the vertex
shader to animate any desired motion. We use the method elapsedRealtime() of the class
SystemClock discussed in Chapter 4 to obtain the time. This method returns a long that
represents the time in milliseconds since the bootup of the device. We subtract this time
value from the value when the GLSurfaceView is created and pass the difference to the draw
method of the Triangle class, which in turn passes it to the vertex shader. The following is
the complete code for this class:

// MyRenderer. java
package opengl.glslanimate;

import
import
import
import
import
import

public

android.content.Context;
android.os.SystemClock;
android.opengl.GLES20;
android.opengl.GLSurfaceView;
javax.microedition.khronos.egl.EGLConfig;
javax.microedition.khronos.opengles.GL10;

class MyRenderer implements GLSurfaceView.Renderer

private Triangle triangle;
private Context context;
private long tO0;

public MyRenderer (Context context0) {
context = contextO;

public void onSurfaceCreated(GL10 unused, EGLConfig configqg)

//

Set the background frame color

GLES20.glClearColor (0.9f, 0.9£, 0.9f, 1.0f);

/7

construct a triangle object

triangle = new Triangle(context);

t0

= SystemClock.elapsedRealtime () ; //initial time

public void onDrawFrame (GL10 unused) {
// Redraw background color
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT) ;
SystemClock.sleep (100); // delay 0.1 s
long t = SystemClock.elapsedRealtime() - tO0;
triangle.draw(t);

public void onSurfaceChanged(GL10 unused, int width, int height)

GLES20.glViewport (0, 0, width, height);

{

3. For the Triangle class, only the draw method has been added the variable deltaTHandle to
pass the elapsed time value to the vertex shader. The following is the new draw method:

small

22

Animation

public class Triangle

public void draw(long t) {

// Add program to OpenGL ES environment
GLES20.glUseProgram(program) ;

// get handle to vertex shader’s vPosition member

int positionHandle = GLES20.glGetAttribLocation (program,
"vPosition");

// Enable a handle to the triangle vertices

GLES20.glEnableVertexAttribArray (positionHandle);

// Prepare the triangle coordinate data

int vertexStride = 0;

GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, vertexStride, vertexBuffer);

// get handle to fragment shader’s vColor member

int colorHandle=GLES20.glGetUniformLocation (program, "vColor");

// get handle to vertex shader’s uniform variable deltaT

int deltaTHandle=GLES20.glGetUniformLocation (program, "deltaT");

// Set color for drawing the triangle

GLES20.glUniformé4fv (colorHandle, 1, color, 0);

// set value for deltaT of vertex shader

GLES20.glUniformlf (deltaTHandle, (float) t);

// Draw the triangle

GLES20.glDrawArrays (GLES20.GL_TRIANGLES, 0, vertexCount);

// Disable vertex array
GLES20.glDisableVertexAttribArray (positionHandle) ;

4. The vertex shader in res/raw/vshader receives the value of the uniform variable deltaT from
the draw method of the Triangle class of the application. It makes use of the sin function
to obtain a multiplication factor s that changes between —1 and 1. This factor is multiplied
to the vertex positions of the triangle and thus the triangle expands and shrinks according to
the value of s. When s changes sign (e.g from positive to negative), the triangle flips over. It
is defined as a global varying variable, so that its value can be passed to the fragment shader
for other uses. The following is the complete code of the vertex shader:

// vshader

precision mediump float;

uniform float deltaT; //value from application program
attribute vec4 vPosition; //value from application program
varying float s; //value also used in fragment shader

volid main (void)

{

s = sin (0.001 deltaT); // scaling factor
vecd vPositionl = vPosition % vecd4d (s, s, s, 1.0);
gl_Position = gl_ModelViewProjectionMatrix * vPositionl;

Chapter 6 Graphics with OpenGL ES 2.X 23

As s changes sinusoidally, the vec4 variable vPositionl that defines the final vertex positions
also changes. This s value is also passed to the fragment shader to define the drawing color.

5. The fragment shader fshader takes the value of the varying variable s calculated in the
vertex shader. It changes the color of the triangle from cyan to magenta when s changes
from positive to negative and vice versa. The complete code is shown below:

// fshader
precision mediump float;
varying float s;
void main (void)
{

if (s > 0)
gl_FragColor = vec4(0, 1, 1, 1);

else
gl_FragColor = vec4(1, 0, 1, 1);

Figure 6-7 shows two frames of the output.

(01} 5554:avd-4.1.2 - x

- .
& | Glslanimate

() (b)

Figure 6-7 Two Sample Frames of Animated Triangle

6.3.4 Drawing a Square

We have discussed in Chapter 4 that OpenGL ES polygon drawing primitives only support the
drawing of triangles. To draw any other kind of polygon, we have to decompose the polygon into
triangles. This is true even if we use shaders to draw the polygon. As an example, suppose we
want to draw a square like the one shown in Figure 6-8 below.

To draw the square, we first draw the triangle vyv;v3 and then draw v3v;va, ordering the ver-
tices in a counter-clockwise direction. We will use the function glDrawElements() to perform this
task. All we need to do is to supply the vertex coordinates and an array that contains the vertex
indices.

24 Drawing a Square

(—0.5,0.5,0) (0.5,0.5,0)

VU3 V2

AN
AN
AN
AN
AN
AN
AN
AN
N

0 U1

(0.5, -0.5,0) (0.5,-0.5,0)

Square vgU1V2v3 = Avguivz + Avzvivs

Figure 6-8. A Square Consisting of Two Triangles

Suppose we name the project that draws the square of Figure 6-8 GlsliSquare. The files needed
are almost the same as those of the project GlsIRaw except that we replace the Triangle class by the
Square class. The following is the code of the Square class but the methods getShaderCode() and
loadShader(), and some data members are not listed as they are identical to that of the Triangle
class discussed above.

public class Square

private FloatBuffer vertexBuffer;
private ShortBuffer indexArray;

// number of coordinates per vertex in this array
static final int COORDS_PER_VERTEX = 3;

static float squareCoords[] = {
-0.5f, -0.5f, 0.0f, // vO0 - bottom left
0.5, -0.5f, 0.0f, // vl - bottom right
-0.5f, 0.5f, 0.0f, // v2 - top left
0.5f, 0.5f, 0.0f // v3 - top right
bi

// draw in the order vO0, vl1, v2, v2, vl, v3
private short drawOrder([] = { 0, 1, 2, 2, 1, 3 };
float color([] = { 0.9f, 0.1f, 0.9f, 1.0f };

// Constructor
Square (Context context0) {
context = contextO;

// get shader codes from res/raw/vshader and res/raw/fshader
vsCode = getShaderCode(GLES20.GL_VERTEX_SHADER);

fsCode = getShaderCode(GLES20.GL_FRAGMENT_SHADER);

program = GLES20.glCreateProgram() ;

vertexShader = loadShader (GLES20.GL_VERTEX_ SHADER, vsCode);
fragmentShader = loadShader (GLES20.GL_FRAGMENT_SHADER, fsCode);

Chapter 6 Graphics with OpenGL ES 2.X 25

GLES20.glAttachShader (program, vertexShader);
GLES20.glAttachShader (program, fragmentShader);
GLES20.glLinkProgram (program) ;
GLES20.glUseProgram(program) ;

// initialize vertex byte buffer for shape coordinates

ByteBuffer bb = ByteBuffer.allocateDirect (
squareCoords.length x 4);

bb.order (ByteOrder.nativeOrder());

vertexBuffer = bb.asFloatBuffer();

vertexBuffer.put (squareCoords) ;

vertexBuffer.position (0);

// initialize byte buffer for the draw list

ByteBuffer bbOrder = ByteBuffer.allocateDirect (

drawOrder.length x 2);

bbOrder.order (ByteOrder.nativeOrder ());

indexArray = bbOrder.asShortBuffer();

indexArray.put (drawOrder) ;

indexArray.position(0);

} // Square Constructor

public void draw () {
// Add program to OpenGL ES environment
GLES20.glUseProgram (program) ;

int positionHandle = GLES20.glGetAttribLocation (program, "vPosition");
GLES20.glEnableVertexAttribArray(positionHandle) ;

int vertexStride = 0;
GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, vertexStride, vertexBuffer);

int colorHandle = GLES20.glGetUniformLocation (program, "vColor");

GLES20.glUniform4fv(colorHandle, 1, color, 0);

// Draw the square

GLES20.glDrawElements (GLES20.GL_TRIANGLES, drawOrder.length,
GLES20.GL_UNSIGNED_SHORT, indexArray);

// Disable vertex array
GLES20.glDisableVertexAttribArray (positionHandle) ;

In the code, indexArray contains the vertex indices specified by drawOrder, the length of which
gives the total number of indices and is equal to 6 in the example, representing the two triangles
that form the square. The method glDrawElements() draws these two triangles, connecting the
vertices in the order given by indexArray.

Besides replacing the Triangle class by the Square class in MyRenderer, we adjust the display
aspect ratio as we want to display a square on the rectangular Android screen. Also we want to
display the square at the upper part of the screen. So we set the viewport in the method onSur-
faceChanged:

public void onSurfaceChanged(GL10 unused, int width, int height) {
float ratio = (float) width / height;

26 Drawing a Color Square

GLES20.glViewport (0, height/3, width, (int) (height * ratio));

The vertex shader and the fragment shader are the same as those for displaying a triangle:

// vshader: Source code of vertex shader
attribute vecd4 vPosition;
void main () {

gl_Position = vPosition;

// fshader: Source code of fragment shader
precision mediump float;
uniform vecd4 vColor;
void main () {
gl_FragColor = vColor;

Figure 6-9 below shows the output of this project.

N N
% | GlsISquare

Figure 6-9 Output of Project GlsISquare

6.3.5 Drawing a Color Square

In the above example, we draw a square with a single color by passing the color through a uniform
variable to the fragment shader. Suppose now we want to draw the square with a unique color at
each vertex of the square. We cannot pass the colors directly to the fragment shader any more
because we need to associate a color with a vertex. To accomplish this, we can pass a color value
as a vertex attribute to the vertex shader, which then passes the color value to the color shader
through a varying variable. The following are the shader codes:

// vshader

precision mediump float;

attribute vecd4 vPosition; // value from application program
attribute vecd4 sourceColor;

varying vec4 vColor; // value to be sent to fragment shader

Chapter 6 Graphics with OpenGL ES 2.X

void main (void)

{

vColor = sourceColor;
gl_Position = vPosition;
}
// fshader

varying vecd4 vColor;

void main () {
gl_FragColor = vColor;

27

We just need to make minor changes to the class Square. All we need to do is to define an
array called colors to specify the RGBA color at each vertex of the square. We then treat the array
colors in the way we do to the vertex coordinates array vertexArray. Each color is passed to the
varying variable sourceColor of the vertex shader. The following is the modified portion of the

code of Square:

public class Square

private FloatBuffer vertexBuffer,

private ShortBuffer indexArray;

static float squareCoords[] = {
-0.5f, -0.5f, 0.0f, // v0O -

0.5f, -0.5f, 0.0f, // vl -
-0.5f, 0.5f, 0.0f, // v2 -
0.5f, 0.5f, 0.0f // v3 -
}i
static float colors[] = {
1.0f, 0.0f, 0.0f, 1.0f, //
0.0f£, 1.0f, 0.0f, 1.0f, //
0.0f, 0.0f, 1.0f, 1.0f, //
1.0f£, 1.0f, 0.0f, 1.0f //
bi
private short drawOrder[] = { O

// Constructor
Square (Context contextO) {

// initialize vertex byte buffer for shape coordinates
ByteBuffer bb = ByteBuffer.allocateDirect (squareCoords.length » 4);

bottom left

colorBuffer;

bottom right

top left

top

14 ll

right

red
green
blue
yellow

bb.order (ByteOrder.nativeOrder());

// do the same for colors

ByteBuffer bbc = ByteBuffer.allocateDirect (colors.length x 4

bbc.order (ByteOrder.nativeOrder ());

// create a floating point buffer from the ByteBuffer

vertexBuffer = bb.asFloatBuffer();
// add the coordinates to the FloatBuffer

vertexBuffer.put (squareCoords

)i

// set the buffer to read the first coordinate

)i

28 Temperature Shaders

vertexBuffer.position (0);

// do the same for colors
colorBuffer = bbc.asFloatBuffer ();
colorBuffer.put (colors);
colorBuffer.position (0);

// initialize byte buffer for the draw list
ByteBuffer bbOrder = ByteBuffer.allocateDirect (drawOrder.length * 2);
bbOrder.order (ByteOrder.nativeOrder ());
indexArray = bbOrder.asShortBuffer();
indexArray.put (drawOrder) ;
indexArray.position (0);
} // Square Constructor

public void draw() {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program) ;

// get handle to vertex shader’s vPosition and sourceColor
int positionHandle=GLES20.glGetAttribLocation (program, "vPosition");
int colorHandle=GLES20.glGetAttribLocation (program, "sourceColor");

GLES20.glEnableVertexAttribArray (positionHandle);

GLES20.glEnableVertexAttribArray(colorHandle);

GLES20.glVertexAttribPointer (positionHandle, 3,
GLES20.GL_FLOAT, false, 0, vertexBuffer);

GLES20.glVertexAttribPointer (colorHandle, 4,
GLES20.GL_FLOAT, false, 0, colorBuffer);

// Draw the square
GLES20.glDrawElements (GLES20.GL_TRIANGLES, drawOrder.length,
GLES20.GL_UNSIGNED_SHORT, indexArray);

// Disable vertex arrays
GLES20.glDisableVertexAttribArray(positionHandle);
GLES20.glDisableVertexAttribArray(colorHandle);

When we run the program, we will see a color square like the one shown in Figure 6-10 below.

6.3.6 Temperature Shaders

As an application to the above example, color square, we use colors to represent temperatures with
red meaning hot and blue meaning cold. A warm temperature is a mixture of red and blue. We
can imagine that the square is a metallic sheet with each corner connected to a heat or a cooling
source. We can express smoothly the surface temperature as a mixture of red and blue. In the
example, we assume that the lowest temperature is 0 and the highest is 50.

To accomplish this we pass the temperature value at each square vertex via the attribute array
variable vertexTemp to the vertex shader. The shader normalizes it to a value between 0 and 1
before passing the value to the fragment shader via the varying variable temperature.

Chapter 6 Graphics with OpenGL ES 2.X 29

i T 5554:avd-4.1.2 - X

Figure 6-10 Drawing a Color Square

The following is the vertex shader code:

// vshader

precision mediump float;

attribute vec4 vPosition; // value from application program
attribute float vertexTemp; // from application program

varying float temperature; // value to be sent to fragment shader

void main (void)

{

// normalize temperature to [0, 1]
temperature = (vertexTemp - 0) / 50;
gl_Position = vPosition;

The application also passes the blue color that represents the coldest temperature and the red
color that represents the hottest temperature to the fragment shader via the uniform variables
coldColor and hotColor respectively. Knowing these two colors, the fragment shader gets the
normalized temperature value from the vertex shader and calculates a color for it with use of the

glsl built-in funciton mix:

// fshader

uniform vec3 coldColor;

uniform vec3 hotColor;

varying float temperature; // from vshader, value in [0,1]

void main () {
vec3 color = mix (coldColor, hotColor, temperature);

gl_FragColor = vecd4 (color, 1);

The application just needs to define the data for those quantities and gets handles to the at-
tribute and uniform variables of the shaders to pass the data to them. The following is the modi-
fied portion of the Square class that does the job:

30 Temperature Shaders

public class Square

private FloatBuffer vertexBuffer, vertexTempBuffer;
private ShortBuffer indexArray;

static float squareCoords[] = {
-0.5f, -0.5f, 0.0f, // vO0 - bottom left
0.5f, -0.5f, 0.0f, // vl - bottom right
-0.5f, 0.5f, 0.0f, // v2 - top left
0.5f, 0.5f, 0.0f // v3 - top right
}i
// Temperature at each vertex

static float vertexTemp[] = {
5.0f, // v0 cold
12.0f, // v1 cool
22.0f, // v2 warm
40.0f // v3 hot (upper right)
}i
private short drawOrder([] = { 0, 1, 2, 2, 1, 3 };

// Constructor
Square (Context contextO) {
// initialize vertex byte buffer for square coordinates
ByteBuffer bb = ByteBuffer.allocateDirect (squareCoords.length x 4);
bb.order (ByteOrder.nativeOrder ()) ;
// do the for vertexTemp
ByteBuffer bbc = ByteBuffer.allocateDirect (vertexTemp.length % 4);
bbc.order (ByteOrder.nativeOrder ()) ;

vertexBuffer = bb.asFloatBuffer();
vertexBuffer.put (squareCoords) ;
vertexBuffer.position(0);

vertexTempBuffer = bbc.asFloatBuffer();
vertexTempBuffer.put (vertexTemp);
vertexTempBuffer.position (0);

// initialize byte buffer for the draw list

ByteBuffer bbOrder = ByteBuffer.allocateDirect (drawOrder.length * 2);
bbOrder.order (ByteOrder.nativeOrder ());

indexArray = bbOrder.asShortBuffer();

indexArray.put (drawOrder) ;

indexArray.position(0);

} // Square Constructor
public void draw() {
// Add program to OpenGL ES environment

GLES20.glUseProgram(program) ;

// get handle to vertex shader’s vPosition, vertexTemp, .
int positionHandle = GLES20.glGetAttriblocation (program, "vPosition");

Chapter 6 Graphics with OpenGL ES 2.X 31

int vertexTempHandle=GLES20.glGetAttribLocation (program, "vertexTemp") ;
int coldColorHandle =GLES20.glGetUniformLocation (program, "coldColor");
int hotColorHandle = GLES20.glGetUniformLocation (program, "hotColor");
GLES20.glUniform3f (coldColorHandle, 0.0f, 0.0f, 1.0f);// blue = cold
GLES20.glUniform3f (hotColorHandle, 1.0f, 0.0f, 0.0f); // red = hot

GLES20.glEnableVertexAttribArray (positionHandle);
GLES20.glEnableVertexAttribArray (vertexTempHandle);
GLES20.glVertexAttribPointer (positionHandle, 3,
GLES20.GL_FLOAT, false, 0, vertexBuffer);
// pass temperature at each vertex to vertex shader
GLES20.glVertexAttribPointer (vertexTempHandle, 1,
GLES20.GL_FLOAT, false, 0, vertexTempBuffer);
// Draw the square
GLES20.glDrawElements (GLES20.GL_TRIANGLES, drawOrder.length,
GLES20.GL_UNSIGNED_SHORT, indexArray);
// Disable vertex arrays
GLES20.glDisableVertexAttribArray(positionHandle);
GLES20.glDisableVertexAttribArray(vertexTempHandle);

Figure 6-11 below shows the output of this example.

Figure 6-11 Output of Temperature Shaders

6.4 Drawing 3D Objects

6.4.1 Introduction

So far the rendering objects we have considered are two dimensional. If we want to render 3D
objects, we need to define a 3D viewing volume, which is referred to as a frustum. Figure 6-12
below shows a typical setup of such a view-frustum, which is bounded by a near plane at z = —n,
and a far plane at z = — f. In the figure, the point O is the origin of the coordinate system, and is
the observation point (i.e. location of the camera or eye). The observer looks along the negative
z—axis. So the near plane is at a distance of n from O and the far plane is f from O. The notations
l,r, b, and t denote left, right, bottom and top respectively. So the left boundary of the near plane

32 Introduction

is at x = [, and the right boundary at x = r. The bottom and top boundaries of the near plane are
aty = b and y = t respectively. Ultimately, all 3D objects inside the frustum are projected onto
the near plane, which is viewed by an observer at point O.

(r, t, -f)

(r, t, -f)

z=-f

View-Frustum | Far-plane

e (F, b, 1)

z=-n
O Near-plane

Figure 6-12 Frustum-shaped Viewing Volume

In 3D graphics, both a point and an Euclidean vector can be represented by a 3-tuple (z,y, z).
Though they have the same representation and appear to be the same, a point and a vector are
different elements. A point represents a location; it does not have any direction or magnitude. On
the other hand, a vector indicates a direction but does not specify any location; a vector also has
a magnitude (length). For convenience, people use homogeneous coordinates to represent both a
vector and a point by introducing the fourth coordinate w:

A= 6.1)

SIS

w

In (6.1), A is a vector when w = 0, and is a point when w = 1. This is consistent with our
common intuition about points and vectors. When we add a vector to another vector, we get a new
vector as the sum of the w components, which are 0, is 0. When we add a point (w = 1) to a vector
(w = 0), we get a point as the sum of the w components, 0 and 1, is 1. In summary we have,

vector + vector = vector
vector - vector = vector
vector + point = point
vector - point = invalid
point - vector = point
point - point = vector
point + point = invalid

constant x vector vector

We can form a linear combination of points:
A=c1Pi+cPy+ ... + ¢, P, (6.2)

where P; denotes a point and ¢; is a coefficient constant. Whether the result A is a valid point or
not depends on the sum of the coefficients

S=c1+cx+....+ec, (6.3)

Chapter 6 Graphics with OpenGL ES 2.X 33

If S =0, Aisavector. If S = 1, A is a valid point and (6.2) is referred to as an affine combination
of points. Otherwise A is invalid. Conversely, an Euclidean vector can always be expressed as a
linear combination of points.

As a point is represented by a 4 x 1 matrix as shown in Equation (6.1), any transformation
operation on it, such as a rotation, a translation or a scaling, can represented by a 4 x 4 matrix. For
example, if M is a 4 X 4 matrix, and P and @ are points, the equation () = M P represents that
the point P is transformed to the point) under the transformation matrix M. We may also write
this explicitly as

T Moo M1 Mp2 Me3 x
!
m m m m
Q= y/ — MP = 10 11 12 13 Yy (6.4)
z Mmoo M21 M22 123 z
1 m3g M31 M3z M33 1

Transformations such as translations, rotations, and scalings that change the view of a 3D object
are referred to as model-view transformations. These transformation are reversible. For example,
we rotate a point about the z—axis by 30° to get to a new location. We can go back to the original
position by rotating the new point about the z—axis in the opposite direction by 30°.

At the end, a 3D point is projected on to the near-plane screen, which is two dimensional; this
is called projection transformation. In principle, such a transformation is not reversible as going
from 3D to 2D will lose information in the process. However, to make a transformation matrix of
projection compatible with that of model-view, people have expressed the projection matrix in a
way that it is reversible (i.e., its inverse exists). The trick is to store the depth component (the z
value) in a separate buffer and handle it separately. The z component recovered by the inverse of
the project matrix will be discarded. So in OpenGL, all transformation matrices are 4 x 4.

In OpenGL ES 2.0, we need to pass the 4 x 4 matrix M to the vertex shader to perform the 3D
transformation. In declaring a variable, we usually use mv to refer to model-view and mvp to refer
to model-view projection.

6.4.2 Drawing a Tetrahedron

A tetrahedron is composed of four triangular faces, three of which meet at each vertex and thus it
has four vertices. It may be the simplest kind of 3D objects.

A tetrahedron can be considered as a pyramid, which is a polyhedron with a flat polygon base
and triangular faces connecting the base to a common point. A tetrahedron simply has a triangular
base, so a tetrahedron is also known as a triangular pyramid.

A regular tetrahedron is one in which all four faces are equilateral triangles. The vertices
coordinates of a regular tetrahedron with edge length 2 centered at the origin are

-1 -1 1 1
ﬁ)a (717075)7 (Ovla\ﬁ)v (0,71,5

We illustrate many basic techniques of drawing 3D objects with OpenGL ES 2.0 through an ex-
ample of drawing a regular tetrahedron. One main feature is to pass the resulted 4 x 4 model-view
projection matrix to the vertex shader. The matrix transforms a point accordingly and projects it
onto a 2D plane.

Suppose we call our project and application Tetrahedron. The structure of our project is
the same as those discussed above, where the shaders are saved in the files res/raw/vshader,
and res/raw/fshader. Just like before, we have three classes, MainActivity, MyRenderer, and
Tetrahderon. The class MainActivity is the same as what we have used above .

(1,0,) (6.5)

34 Drawing a Tetrahedron

MyRenderer

The main change to the class MyRenderer is that we need to define our viewing environment
and caculates the model-view projection transformation matrix, which will be passed to the vertex
shader for displaying the vertices of the 3D object properly.

We calculate the data for a projection transformation in the onSurfaceChanged() method. This
is done using the method frustumM of the class Matrix, which stores 4 x 4 matrices in column-
major order. The method has prototype,

public static void frustumM (float[] m, int offset, float left,
float right, float bottom, float top, float near, float far)

The method defines a viewing frustum as shown in Figure 6-12 above. The second parameter,
offset, is the offset into float array m where the projection matrix data are written. The parameters,
left, right, bottom, and fop define the boundaries of the near-plane, near and far are the distances
from the observation point (O in Figure 6-12) to the near-plane and the far-plane respectively.
Based on these parameters, OpenGL ES calculates a 4 x 4 matrix and saves it in the array m, the
first parameter of the method.

The following is what we use in our tetrahedron example,

Matrix.frustumM(projectionMatrix, 0, -1, 1, -1, 1, 2, 10);

Projecting a 3D object on a plane is like taking a photo of the object. How the 3D object appears
on the projection screen depends on the way the camera views the 3D object. We can define the
camera view transformation using the setLookAtM() method of the class Matrix. The method
calculates a 4 x 4 matrix for a specified setup. It has the following prototype:

public static void setLookAtM (float[] m, int offset, float eyeX,
float eyeY, float eyeZ, float centerX, float centery,
float centerZ, float upX, float upY, float upZ)

The point (eyeX, eyeY, eyeZ) specifies the location of the observation point (eye), and the
point (centerX, centerY, centerZ) is the view center, the point at which the viewer is looking at.
The vector (upX, upY, upZ) denotes the up direction of the camera. The method calculates the 4 x 4
viewing matrix and writes it to the array m.

After we have obtained the projection matrix and the viewing matrix, we can multiply them
together to form a single matrix, which can be passed to the vertex shader to draw the object. The
multiplication can be done by the Matrix method multiplyMM:

public static void multiplyMM (float[] result, int resultOffset,
float[] 1lhs, int 1lhsOffset, float[] rhs, int rhsOffset)

The array lhs holds the 4 x 4 left-hand side matrix while rAs holds the right-hand side matrix.
The product of these two matrices is saved in the array result. The offset parameters are offsets
into the arrays where data are read or written. The following is the code for the class MyRenderer
of our example:

public class MyRenderer implements GLSurfaceView.Renderer
{
private final float[] mvpMatrix = new float[1l6];
private final float[] projectionMatrix = new float[1l6];
private final float[] viewMatrix = new float[1l6];
private Tetrahedron tetrahedron;
private Context context;

public MyRenderer (Context context0) {

Chapter 6 Graphics with OpenGL ES 2.X 35

context = contextO;

}
public void onSurfaceCreated(GL10 unused, EGLConfig config) {

// Set the background frame color
GLES20.glClearColor (0.9f, 0.9£, 0.9f, 1.0f);
// construct a tetrahedron object
tetrahedron = new Tetrahedron (context);
}
public void onDrawFrame (GL10 unused) {
// Redraw background color
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT);
// Set the camera position (View matrix)
Matrix.setLookAtM(viewMatrix,0,0.5£,0,4,0£,0£,0£,0£,1.0£,0.0£);

// Calculate the product of projection and view transformation
Matrix.multiplyMM (mvpMatrix,O0,projectionMatrix, 0, viewMatrix, O0);
//Draw tetrahedron with resulted model-view projection matrix
tetrahedron.draw(mvpMatrix);

public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport (O, 0, width, width);
Matrix.frustumM(projectionMatrix, 0, -1, 1, -1, 1, 2, 10);

In the code, the setLookAtM() method, has set the viewing point to (0.5,0,4) and the view
center to (0,0,0). The up-vector is (0,1,0). This means that the observer is at the z-z plane,
looking at the origin mostly along the negative z direction. The y axis is pointing in the up
direction. The final model-view projection matrix is held in the array variable mvpMatrix, which
is passed to the draw method of the Tetrahedron class, which in turn passes it to the vertex shader.

Tetrahedron

In our project, the Tetrahedron class is similar to the Square class we discussed in previous
sections. However, for simplicity and clarity, we draw the tetrahedron using line strips rather than
triangles. The following is a portion of the code of Tetrahedron modified from Square:

public class Tetrahedron

// vertices coordinates of tetrahedron
static float tetraCoords[] = {
i, 0, -0.707£, -1, 0, -0.707f,
0, 1, 0.707f, 0, -1, 0.707f
}i
// Order of indices of drawing the tetrahedron
private short drawOrder[] = { O, 1, 2, 0, 3, 1, 2, 3 };
float color[] = { 0.9f, 0.1f, 0.9f, 1.0f };

// Constructor
Tetrahedron (Context contextO) {
context = contextO;
// get shader codes from res/raw/vshader and res/raw/fshader

36 Drawing a Tetrahedron

vsCode = getShaderCode(GLES20.GL_VERTEX_SHADER) ;
fsCode = getShaderCode (GLES20.GL_FRAGMENT_SHADER);
ByteBuffer bb = ByteBuffer.allocateDirect (tetraCoords.length x 4);
bb.order (ByteOrder.nativeOrder ());
vertexBuffer = bb.asFloatBuffer();
vertexBuffer.put (tetraCoords);
vertexBuffer.position(0);
// initialize byte buffer for the draw list
// with # of coordinate values * 2 bytes per short
ByteBuffer bbDrawOrder=ByteBuffer.allocateDirect (drawOrder.length=*2);
bbDrawOrder.order (ByteOrder.nativeOrder());
indexArray = bbDrawOrder.asShortBuffer();
indexArray.put (drawOrder) ;
indexArray.position (0);
} // Tetrahedron Constructor

public void draw(float[] mvpMatrix) {

// Add program to OpenGL ES environment
GLES20.glUseProgram (program) ;
// get handle to shape’s transformation matrix i shader
int mvpMatrixHandle =

GLES20.glGetUniformLocation(program, "mvpMatrix");
// Pass model-view projection transformation matrix to the shader
GLES20.glUniformMatrix4fv (mvpMatrixHandle, 1, false, mvpMatrix, 0);
// get handle to vertex shader’s vPosition member
int positionHandle = GLES20.glGetAttribLocation (program, "vPosition");
// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray (positionHandle) ;

// Prepare the triangles coordinate data

int vertexStride = 0;

GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, vertexStride, vertexBuffer) ;

// get handle to fragment shader’s vColor member

int colorHandle = GLES20.glGetUniformLocation (program, "vColor");

// Set color for drawing the triangle

GLES20.glUniform4fv (colorHandle, 1, color, 0);

// Draw the tetrahedron using lines

GLES20.glLineWidth (5);

GLES20.glDrawElements (GLES20.GL_LINE_STRIP, drawOrder.length,
GLES20.GL_UNSIGNED_SHORT, indexArray);

// Disable vertex array
GLES20.glDisableVertexAttribArray (positionHandle) ;

Shaders

The fragment shader is the same as before. It simply set the fragment color to the vertex color
pass from the application:

uniform vecd vColor;

Chapter 6 Graphics with OpenGL ES 2.X 37

void main () {
gl_FragColor = vColor;
}

The vertex shader is almost as simple except that now it has to multiply the vertex positions
with the model-view projection matrix passed from the application:

// Source code of vertex shader
uniform mat4 mvpMatrix;
attribute vec4 vPosition;
void main () {
gl_Position = mvpMatrix % vPosition;

}

Figure 6-13 shows the program’s output, which is a tetrahedron drawn with line strips.

Figure 6-13 Rendering a Tetrahedron

6.4.3 Rotating a Color Tetrahedron

So far the tetrahedron we have drawn is a wireframe, without any actual face. Here, we discuss
drawing a solid tetrahedron, each face having a different color. Moreover, we will rotate the
tetrahedron by dragging the mouse.

Supose we call this project and application Tetrahedronl. We use the same three java files,
MainActivity.java, MyRenderer,java and Tetrahedron.java that we have used in the previous sec-
tions but with some modifications.

MyRenderer

To rotate a 3D object, one can use the setRotateM or rotateM method of the class Matrix,
which rotates the object for a given angle around a specified axis. We use rotateM to rotate the
tetrahedron, which is performed in the method onDrawFrame of the class MyRenderer:

Matrix.setLookAtM(viewMatrix,0,0.5£,0.5f£,5,0£,0f,0£,0£f£,1£,0.0f);
Matrix.rotateM (rvMatrix, 0, viewMatrix, 0, angle, 1f, 0.2f, 0.2f);

Here, the setLooAtM method sets the viewing matrix viewMatrix as before with the observa-
tion point at (0.5, 0.5, 5), looking towards the origin and the up direction is (0, 1, 0), which is along

38 Rotating a Color Tetrahedron

the y-axis. The second and third parameters are offset indices of the result matrix (rvMatrix) and
the source matrix (viewMatrix); both offsets are 0 in the example. The rotateM method calculates
the matrix that rotates an object around the axis (1, 0.2, 0.2) for an angle specified by the variable
angle. (Note that the axis in the example has a dominant component. The rotation is almost like
one rotating around the z-axis.) This matrix is multiplied to viewMatrix and the result is saved in
rvMatrix, which is our model-view matrix. This matrix is multiplied to the projection matrix to
form the model-view projection matrix mvpMatrix, which is eventually used by the vertex shader
to render the vertices of the object:

Matrix.multiplyMM (mvpMatrix, 0, projectionMatrix, 0, rvMatrix, O0);
tetrahedron.draw(mvpMatrix);

To draw a solid tetrahedron, we need to enable the depth-test and cull the back faces, which are
facing the interior of the object. In our example, we set front facging to counter-clockwise. The
following is the code for the modified MyRenderer that does the face culling and rotation:

public class MyRenderer implements GLSurfaceView.Renderer

// view matrix with rotation
private final float[] rvMatrix = new float[1l6];
private float angle = 0; // angle of rotation
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
// Set the background frame color
GLES20.glClearColor(0.9f, 0.9f, 0.9f, 1.0f);
// Cull back faces
GLES20.glEnable (GLES20.GL_CULL_FACE) ;
GLES20.glCullFace (GLES20.GL_BACK) ;
// Set front-facing to be counter—-clockwise
GLES20.glFrontFace (GLES20.GL_CCW) ;

GLES20.glEnable (GLES20.GL_DEPTH_TEST);
//larger z values are nearer to viewpoint
GLES20.glDepthFunc (GLES20.GL_GREATER) ;

// Construct a Tetrahedron object
tetrahedron = new Tetrahedron (context);

public void onDrawFrame (GL10 unused) {
// Redraw background color, clear depth buffer
GLES20.glClear (GLES20.GL_COLOR_BUFFER_BIT|GLES20.GL_DEPTH_BUFFER_BIT) ;
// Set the camera position (View matrix)
Matrix.setLookAtM(viewMatrix,0,0.5f,0.5f£,5,0f,0f£,0£,0£f,1£,0.0f);
// Multiply view matrix by rotation matrix, result in rvMatrix
Matrix.rotateM (rvMatrix,0,viewMatrix,O,angle,1f,0.2£f,0.2f);
// Calculate the projection and view transformation
Matrix.multiplyMM (mvpMatrix, 0,projectionMatrix, 0,rvMatrix,O0);
// Draw the object with the transformation matrix
tetrahedron.draw(mvpMatrix);

// Get and set angle of rotation
public float getAngle () {
return angle;

Chapter 6 Graphics with OpenGL ES 2.X 39

public void setAngle (float angle0) {
angle = angle0;

Tetrahedron

The class Tetrahedron is similar to that described in the previous section. It is responsible
for reading, compiling, loading and running the shaders. Like before, we just need one array to
store the coordinates of the four vertices of a tetrahedron; the vertices are shared by the four faces
(triangles) of the tetrahedron. We can use a set of draw order to specify one face. For example,
the set of indices (0, 2, 3) means to draw the triangle vovovs; these vertices must be arranged in a
counter-clockwise direction when we look at the face from the outside of the object. As there are
four faces, we need a total of four draw order lists. Moreover, we need four different colors, one
for each face, and we have chosen the colors to be red, green, blue and yellow. We draw the face
one at a time, using a different color and draw-order list. Each time we draw a face, the specified
color is passed to the fragment shader uniform variable vColor. The following is the modified
portion of the code of Tetrahedron..

public class Tetrahedron

private FloatBuffer vertexBuffer;
private FloatBuffer colorBuffer[];
private ShortBuffer indexArrayl[];
// number of faces in object
static final int N_FACES = 4;
// coordinates of tetrahedron vertices
static float tetraCoords[] = {

1, 0, -0.707f, // vertex v0
-1, 0, -0.707f£, // vl

0, 1, 0.707f, // v2

0, -1, 0.707f // v3
}i

// draw order of each face
private short drawOrders[][] = {

{o, 1, 2}, (0, 2, 3}, ({0, 3, 1}, ({3, 2, 1}
bi

// color for each face

static float colors[][] = {

{1.0f, 0.0f, 0.0f, 1.0f}, // v0,vl,v2 red
{0.0f, 1.0f, 0.0f, 1.0f}, // 0, 2, 3 green
{0.0f, 0.0f, 1.0f, 1.0f}, // 0, 3, 1 blue
{1.0f, 1.0f, 0.0f, 1.0f} // 3, 2, 1 yellow
}i

// Constructor
Tetrahedron (Context contextO) {
// alloocate memory to store tetrahedron vertices
ByteBuffer bb = ByteBuffer.allocateDirect (tetraCoords.length x 4);
bb.order (ByteOrder.nativeOrder ()) ;
vertexBuffer = bb.asFloatBuffer();

40 Rotating a Color Tetrahedron

vertexBuffer.put (tetraCoords);
vertexBuffer.position(0);
// do the same for colors
colorBuffer = new FloatBuffer[N_FACES]; // a color for each face
indexArray = new ShortBuffer [N_FACES]; // N_FACES triangles
for (int i = 0; i < N_FACES; i++) {
ByteBuffer bbc = ByteBuffer.allocateDirect (colors[i].lengthx4);

bbc.order (ByteOrder.nativeOrder ());
colorBuffer[i] = bbc.asFloatBuffer();
colorBuffer[i].put (colors[i]);

colorBuffer[i] .position(0);

// initialize byte buffer for each face, 2 bytes per short
ByteBuffer bbDrawOrder =
ByteBuffer.allocateDirect (drawOrders([i].length x 2);

bbDrawOrder.order (ByteOrder.nativeOrder());
indexArray[i] = bbDrawOrder.asShortBuffer();
indexArray[i] .put (drawOrders([i]);
indexArray[i] .position(0);

}

} // Tetrahedron Constructor

public void draw(float[] mvpMatrix) {

// get handle to shape’s transformation matrix

int mvpMatrixHandle=GLES20.glGetUniformLocation (program, "mvpMatrix");

// Pass the projection and view transformation to the shader

GLES20.glUniformMatrix4fv (mvpMatrixHandle, 1, false, mvpMatrix,0);

// Draw one face at a time

for (int i = 0; i < N_FACES; 1i++){
// get handles to shaders’ vPosition and vColor member
int positionHandle=GLES20.glGetAttribLocation (program, "vPosition");
int colorHandle = GLES20.glGetUniformLocation (program, "vColor");
// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray (positionHandle) ;
// GLES20.glEnableVertexAttribArray(colorHandle);

// Prepare the triangle coordinate and color data

int vertexStride = 0;

GLES20.glUniform4fv (colorHandle, 1, colors[i], 0);

GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, vertexStride, vertexBuffer);

GLES20.glDrawElements (GLES20.GL_TRIANGLES,drawOrders[i].length,

GLES20.GL_UNSIGNED_SHORT, indexArray[i]);
GLES20.glDisableVertexAttribArray (positionHandle) ;

MyGLSurfaceView

Like before, this class, MyGLSurfaceView, is part of the program file MainActivityjava. It is
responsible for responding to touch events.

In order to make an OpenGL ES application respond to touch events, we have to imple-
ment the onTouchEvent() method in the GLSurfaceView class. We follow the example pre-

Chapter 6 Graphics with OpenGL ES 2.X 41

sented in the Android developers web site to do our implementation, which listens for Motion-
Event. ACTION_MOVE events and translates them to an angle of rotation for an object. The
following is the code of this class that handles touch events:

class MyGLSurfaceView extends GLSurfaceView

{

private final MyRenderer renderer;

public MyGLSurfaceView (Context context) {
super (context) ;
// Create an OpenGL ES 2.0 context
setEGLContextClientVersion (2);

// Set the Renderer for drawing on the GLSurfaceView

renderer = new MyRenderer (context);

setRenderer (renderer);

// Render the view only when there is a change in the drawing data
setRenderMode (GLSurfaceView.RENDERMODE_WHEN_DIRTY) ;

private final float TOUCH_SCALE_FACTOR = 180.0f / 320;
private float previousX, previousY;

@Override
public boolean onTouchEvent (MotionEvent e) {
// MotionEvent reports input details from the touch screen
// and other input controls. Here we are only interested
// in events where the touch position has changed.
float x = e.getX();
float y = e.get¥();
switch (e.getAction()) {
case MotionEvent .ACTION_MOVE:
float dx = x - previousX;
float dy = y - previousY;

// reverse direction of rotation above the mid-line
if (y > getHeight() / 2)
dx = dx * -1 ;
// reverse direction of rotation to left of the mid-line
if (x < getWidth() / 2)
dy = dy * -1 ;

renderer.setAngle (renderer.getAngle() +
((dx + dy) » TOUCH_SCALE_FACTOR)); // = 180.0f / 320
requestRender () ;
}
previousX = x;
previousY = y;
return true;

Note that in the code above, after calculating the rotation angle, it calls requestRender() to
inform the renderer to render the frame. Such an approach is the most efficient in this example
because we do not need to redraw a frame unless the rotation angle has been changed. How-
ever, this will take effect only if we also request that the renderer redraws only when the data

42 Spherical Coordinates

changes. This can be done by setting the render mode to RENDERMODE_WHEN_DIRTY using
the setRenderMode() method as this class does in its constructor.

Shaders

There is not much change in the shaders. They are just as simple as before:

// Source code of vertex shader
uniform mat4 mvpMatrix;
attribute vec4 vPosition;

void main () {
gl_Position = mvpMatrix % vPosition;

}

// Source code of fragment shader
precision mediump float;
uniform vecd vColor;
void main () {
gl_FragColor = vColor;
}

When we run the program, we should see a solid color tetrahedron. We can rotate it by dragging
the mouse on the screen. Figure 6-14 below shows some sample outputs of this example.

(a) (b) (©
Figure 6-14 Sample Outputs of The Color Tetrahedron Project

6.5 Drawing Spheres

6.5.1 Spherical Coordinates

We can use a mesh of triangles to approximate a spherical surface. We have to define the vertices
coordinates of each triangle and every vertex is on the surface of the sphere. In practice, it is
easier to calculate the position of a point on a sphere using spherical coordinates, where a point is
specified by three numbers: the radial distance r of that point from a fixed origin, its polar angle
0 (also called inclination) measured from a fixed zenith direction, and the azimuth angle ¢ of its
orthogonal projection on a reference plane that passes through the origin as shown in Figure 6-15.

Chapter 6 Graphics with OpenGL ES 2.X 43

So in spherical coordinates, a point is defined by (r, 8, ¢) with some restrictions:
r>0
0° <6 <180° (6.6)
0° < ¢ < 360°
Cartesian coordinates of a point (x, y, z) can be calculated from the spherical coordinates, (radius
r, inclination 6, azimuth ¢), where € [0, 00), § € [0, 7], ¢ € [0, 27), by:

x =7 sin 6 cos ¢
y = r sin 6 sin ¢ 6.7)
z=rcosf

2(r,0,9)

Figure 6-15 Spherical Coordinate System

Conversely, the spherical coordinates can be obtained from Cartesean coordinates by:

r= /124 y2 + 22

0 = cos 7! (%) (6.8)
¢ = tan ! <%)

6.5.2 Rendering a Wireframe Sphere

To render a sphere centered at the origin, we can divide the sphere into slices around the z-axis
(similar to lines of longitude), and stacks along the z-axis (similar to lines of latitude). We simply

44 Rendering a Wireframe Sphere

draw the slices and stacks independently, which will form a sphere. Each slice or stack is formed
by line segments joining points together. Conversely, each point is an intersection of a slice and a
stack.

Suppose we want to divide the sphere into m stacks and 7 slices. Since 0 < 6 < 7, the angle
between two stacks is 7w/(m — 1). On the other hand, 0 < ¢ < 27, the angle between two slices
is 27 /n as the angle 27 is not included. That is,

_ Y
60 = T

m
(6.9)
s

Figure 6-16 below shows a portion of two slices and two stacks, and their intersection points.

J Jj+1 .
m stacks, n slices
. Indices
) a c a:jxm++1
b:jxm+i+1
| | c:(j+1) xm+i
| | d:(j+1)xm+i+1
| |
| |
| |
| |
, | |
1+ 1 b | d |

Quad abdc = Aabe + Acbd

Figure 6 - 16. Spherical Surface Formed by Stacks and Slices

Our task is to calculate the intersection points. Suppose we calculate the points along a slice
starting from ¢ = 0, spanning 6 from O to 27, and then incrementing ¢ to calculate the next slice.
We apply equation (6.7) to calculate the x, y, and z coordinates of each point. For convenience, we
define a class called XYZ that contains the x, y, z coordinates of a point, and save the points in an

ArrayList called vertices. The following code shows an implementation of such a task, assuming
that r is the radius of the sphere:

ArrayList<XYZ> vertices = new ArrayList<XYZ>();
final double PI = 3.1415926;

final double TWOPI = 2 % PI;

XYZ p = new XYZ(); // a point

double phi, theta;

for (int j = 0; J < n; J++) { // n slices
phi = j » TWOPI / n;
for (int i = 0; 1 < m; i++) { // m stacks
theta =
p.Xx = r

* PI / (m-1); //0 to pi

(float) (Math.sin (theta) % Math.cos (phi));
p.y = r (float) (Math.sin (theta) * Math.sin (phi));
p.z = r (float) Math.cos (theta);

vertices.add (new XYZ (p));

* % -

*

Chapter 6 Graphics with OpenGL ES 2.X 45

We can save these coordinates in a float array and put them in a byte buffer like what we did in
previous examples:

int nVertices = vertices.size();
float sphereCoords[] = new float[3xnVertices];
k = 0;
for (int i = 0; 1 < nVertices; i++) {
XYZ v = vertices.get (i);
sphereCoords [k++] = v.x;
sphereCoords [k++] = v.y;

sphereCoords [k++] V.Z;

}

ByteBuffer bb=ByteBuffer.allocateDirect (sphereCoords.length » 4);
bb.order (ByteOrder.nativeOrder ());

vertexBuffer = bb.asFloatBuffer();

vertexBuffer.put (sphereCoords) ;

vertexBuffer.position(0);

Now we have obtained all the intersection points. The remaining task is to define a draw order
list that tells us how to connect the points. We use a short array, named drawOrderw to hold the
indices of the vertices in the order we want to connect them. Suppose we first draw the slices. The
following code shows how to calculate the indices for the points of the slices:

int k = 0;
for (int j = 0; J < n; J++) {
for (int i = 0; i < m-1; i++) {
drawOrderw[k++] = (short) (j » m + 1);
drawOrderw[k++] = (short) (j* m + i + 1);

The two indices (j * m + 4) and (j * m + 4 + 1) defines two points of a line segment of a slice.
Each slice is composed of m — 1 line segments. The following code shows the calculations for the
stacks:

for (int 1 = 1; 1 < m - 1; i++) {
for (int j = 0; J < n; J++){
drawOrderw[k++] = (short) (j m + 1i);
if (J == n - 1) //wrap around: j + 1 -—> 0
drawOrderw[k++] = (short) (1i);
else
drawOrderw[k++] = (short) ((j+1)*m + 1i);

Each pair of indices define two end points of a line segment of a stack. When j equals n — 1,
the next point wraps around so that the last point of the stack joins its first point to form a full
circle. So each stack is composed of n segments. Also we do not need to draw the poles, and there
are only m — 2 stacks. Therefore, the total number of indices in drawOrderw is

2xnx(m—1)4+2x(m—=2)xn=4xmxn—6xn

As before, We can put the indices in a byte array to draw slices and stacks, which will form a
wireframe sphere:

46 Rendering a Wireframe Sphere

ByteBuffer bbIndices = ByteBuffer.allocateDirect (
drawOrderw.length x 2);

bbIndices.order (ByteOrder.nativeOrder ());

sphereIndices = bbIndices.asShortBuffer();

sphereIndices.put (drawOrderw);

sphereIndices.position (0);

GLES20.glDrawElements (GLES20.GL_LINES, drawOrderw.length,
GLES20.GL_UNSIGNED_SHORT, sphereIndices);

Since the first index in drawOrderw references the point that is the north pole of the sphere, we
can draw the pole using the statement:

GLES20.glDrawElements (GLES20.GL_POINTS, 1,
GLES20.GL_UNSIGNED_SHORT, sphereIndices);

The shaders are similar to those described in previous examples except now we need to specify
the point size using gl_PointSize:

// Source code of vertex shader
uniform mat4 mvpMatrix;
attribute vec4 vPosition;
void main () {
gl_PointSize = 15;
gl_Position = mvpMatrix % vPosition;
}
// Source code of fragment shader
precision mediump float;
uniform vecd4 vColor;
void main () {
gl_FragColor = vColor;
}

Suppose we set the number of slices to be 24 and the number of stacks to be 16. When we run
the program, we will see a wireframe sphere like the one shown in Figure 6-17 below. The point
near the bottom of the sphere is its north pole.

Figure 6-17 Rendering a Wireframe Sphere

Chapter 6 Graphics with OpenGL ES 2.X 47

6.5.3 Rendering a Color Solid Sphere

Rendering a color solid sphere is similar to rendering a color solid tetrahedron except that we
have to calculate the vertices of the triangle mesh. We have already learned how to decompose
a sphere into slices and stacks in the previous section. Suppose we have saved all the vertices
in vertexBuffer as we did in the previous example. The shaders are also the same as those in the
previous example, which are very simple.

As shown in Figure 6-16, the intersection points of two latitudes and two longitudes form a
quadrilateral, which can be decomposed into two triangles. Since all the vertices coordinates have
been calculated, we just need to find out the order of drawing them in the form of triangles.

As shown in the figure, to draw the quad abcd, we first draw the triangle abc and then draw
the other triangle cbd, both in a counter-clockwise direction. That means the drawing order of the
vertices is a, b, ¢, ¢, b, d. The following code shows the implementation of this procedure:

// n slices, m stacks

int nTriangles = 2 * n % (m — 1); //number of triangles
short drawOrders[][] = new short[nTriangles][3];
int k = 0;
for (int j = 0; J < n; J++) {
for (int i = 0; i < m-1; i++) {

short jl1 = (short) (j + 1);

if (J==n-1) jl = 0; //wrap around

short ia = (short)(j » m + 1) ;

short ib = (short)(j » m + 1 + 1);

short ic = (short) (jl » m + 1);

short id = (short)(jl » m + i + 1);

drawOrders[k] = new short[3]; //first triangle

drawOrders[k] [0] = ia;

drawOrders[k] [1] = ib;

drawOrders[k] [2] = ic;

k++;

drawOrders[k] = new short[3]; //second triangle

drawOrders[k] [0] = ic;

drawOrders[k] [1] = ib;

drawOrders[k] [2] = id;

k++;

}

Suppose we just use the four colors, red, green, blue, and yellow to draw the whole sphere,
alternating the colors between adjacent triangles. We can define a float array to hold the four
colors:

static float colors]]

[
{1.0f, 0.0f, 0.0f, 1.0f}, // red
{0.0f, 1.0f£, 0.0f, 1.0f}, // green
{0.0f, 0.0f, 1.0f, 1.0f}, // blue
{1.0£, 1.0f£, 0.0f, 1.0f} // yellow

i
We need a float buffer to hold the color and a short buffer to hold the vertices of each triangle
of the mesh. This can be implemented as follows:

// a color for each face
FloatBuffer colorBuffer[] = new FloatBuffer[nTriangles];
ShortBuffer spherelIndices[] = new ShortBuffer[nTriangles];

48 Lightling a Sphere

for (int 1 = 0; 1 < nTriangles; i++) {
int j =1 % 4;
ByteBuffer bbc=ByteBuffer.allocateDirect (colors[]j].lengthx4);
bbc.order (ByteOrder.nativeOrder());
colorBuffer[i] = bbc.asFloatBuffer();
colorBuffer[i].put(colors[j]);

colorBuffer[i].position (0);

ByteBuffer bbIndices = ByteBuffer.allocateDirect (
drawOrders[i].length *x 2);

bbIndices.order (ByteOrder.nativeOrder ());

sphereIndices([i] = bbIndices.asShortBuffer();

sphereIndices[i] .put (drawOrders[i]);

sphereIndices[i] .position(0);

To draw the sphere, we simply draw all the triangles, each of which is defined by three vertices
and three colors:

for (int i1 = 0; 1 < nTriangles; i++){
int positionHandle=GLES20.glGetAttribLocation (program, "vPosition");
int colorHandle = GLES20.glGetUniformLocation (program, "vColor");

// Enable a handle to the triangle vertices

GLES20.glEnableVertexAttribArray(positionHandle) ;

int 3 =1 % 4; // only 4 colors

GLES20.glUniform4fv (colorHandle, 1, colors[j], 0);

GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, vertexStride, vertexBuffer);

GLES20.glDrawElements (GLES20.GL_TRIANGLES, drawOrders[i].length,

GLES20.GL_UNSIGNED_SHORT, spherelIndices[il]);
// Disable vertex array
GLES20.glDisableVertexAttribArray (positionHandle) ;

When we run the program, we will see an output similar to the one shown in Figure 16-17
below.

6.5.4 Lighting a Sphere

Lighting is an important feature in graphics for making a scene appear more realistic and more
understandable. It provides crucial visual cues about the curvature and orientation of surfaces, and
helps viewers perceive a graphics scene having three-dimensionality. Using the sphere we have
constructed in previous sections, we discuss briefly here how to add lighting effect to it.

To create lighting effect that looks realistic, we need to first design a lighting model. In graphics,
however, such a lighting model does not need to follow physical laws though the laws can be used
as guidelines. The model is usually designed empirically. In our discussion, we more or less
follow a simple and popular model called Phong lighting model to create lighting effect. In the
model we only consider the effects of a light source shining directly on a surface and then being
reflected directly to the viewpoint; second bounces are ignored. Such a model is referred to as a
local lighting model, which only considers the light property and direction, the viewer’s position,
and the object material properties. It considers only the first bounce of the light ray but ignores
any secondary reflections, which are light rays that are reflected for more than once by surfaces
before reaching the viewpoint. Nor does a basic local model consider shadows created by light.

Chapter 6 Graphics with OpenGL ES 2.X 49

Figure 6-18 Rendering a Color Solid Sphere

In the model, we consider the following features:

1. All light sources are modeled as point light sources.

2. Light is composed of red (R), green (G), and blue (B) colors.

3. Light reflection intensities can be calculated independently using the principle of superposi-
tion for each light source and for each of the 3 color components (R, G, B). Therefore, we
describe a source through a three-component intensity or illumination vector

I=| G (6.10)
B

Each of the components of I in (6.10) is the intensity of the independent red, green, and blue
components.

4. There are three distinct kinds of light or illumination that contribute to the computation of
the final illumination of an object:

e Ambient Light: light that arrives equally from all directions. We use this to model
the kind of light that has been scattered so much by its environment that we cannot tell
its original source direction. Therefore, ambient light shines uniformly on a surface
regardless of its orientation. The position of an ambient light source is meaningless.

o Diffuse Light: light from a point source that will be reflected diffusely. We use this to
model the kind of light that is reflected evenly in all directions away from the surface.
(Of course, in reality this depends on the surface, not the light itself. As we mentioned
earlier, this model is not based on real physics but on graphical experience.)

e Specular Light: light from a point source that will be reflected specularly. We use this
to model the kind of light that is reflected in a mirror-like fashion, the way that a light
ray reflected from a shinny surface.

5. The model also assigns each surface material properties, which can be one of the four kinds:

50 Lightling a Sphere

e Materials with ambient reflection properties reflect ambient light.
e Materials with diffuse reflection properties reflect diffuse light.
e Materials with specular reflection properties reflect specular light.

In the model, ambient light only interacts with materials that possess ambient property; specular
and diffuse light only interact with specular and diffuse materials respectively.

Figure 6-19 below shows the vectors that are needed to calculate the illumination at a point.
In the figure, the labels vPosition, lightPosition, and eyePosition denote points at the vertex, the
light source, and the viewing position respectively. The labels L, N, R, and V are vectors derived
from these points (recall that the difference between two points is a vector), representing the light
vector, the normal, the reflection vector, and the viewing vector respectively. The reflection vector
R is the direction along which a light from L will be reflected if the the surface at the point is
mirror-like. Assuming that the center of the sphere is at the origin O = (0,0, 0), some of them
can be expressed as

light vector L = light Position — vPosition
normal N = vPosition — O (6.11)
view vector V= eyePosition — vPosition

We can normalize a vector by dividing it by its magnitude:

L N V R
=%, n=++, V==, = 15" 6.12
IL| IN]| Vi IR (6.12)

One can easily show that the normalized reflection vector r can be calculated from 1 and n by the
formula,
r=2(n-ln-1 (6.13)

lightPosition

hg
eyePosition

Figure 6-19 Lighting Vectors

Suppose ™ denotes the incident illumination from the light source in the direction 1. The am-
bient, diffuse, and specular illumination on the point vPosition can be calculated according to the
following formulas.

The ambient illumination is given by

I, = c Il (6.14)

Chapter 6 Graphics with OpenGL ES 2.X 51

where I'" is the incident ambient light intensity and c, is a constant called the ambient reflectivity
coefficient.
The diffuse illumination is
Iy =cqIl"-n (6.15)

where 1 - n =r - n, I is the incident diffuse light intensity and c, is a constant called the diffuse
reflectivity coefficient.
The specular illumination can be calculated by

I, =c I (r-v)/ (6.16)

where ¢, is a constant called the specular reflectivity coefficient and the exponent f is a value that
can be adjusted empirically on an ad hoc basis to achieve desired lighting effect. The exponent
fis > 0, and values in the range 50 to 100 are typically used for shinny surfaces. The larger the
exponent factor f, the narrower the beam of specularly reflected light becomes.

The total illumination is the sum of all the above components:

I =1,+1;+1

= col™ + cqI*(1-n) + c I (r - v)/ 6.17)
This model can be easily implemented in the glsl shader language. In our example, where the illu-
minated object is a sphere, the shader code is further simplified. The positions of the light source,
the vertex, and the eye (viewing point) are passed from the the application to the vertex shader as
uniform variables. The vertex shader calculates the vectors L, N, and V from the positions and
pass them to the fragment shader as varying variables:

// Source code of vertex shader

uniform mat4 mvpMatrix;

attribute vec4 vPosition;

uniform vecd4 eyePosition;

uniform vecd4 lightPosition;

varying vec3 N; //normal direction
varying vec3 L; //light source direction
varying vec3 V; //view vector

void main () {
gl_Position = mvpMatrix % vPosition;
N = vPosition.xyz; //normal of a point on sphere
L = lightPosition.xyz - vPosition.xyz;
V = eyePosition.xyz - vPosition.xyz;

}

The fragment shader obtains the vectors L, N, and V from the vertex shader, normalizes them,
and calculates the reflection vector r. It then uses formulas (6.14) to (6.17) to calculate the illumi-
nation at the vertex:

// Source code of fragment shader
precision mediump float;
varying vec3 N;
varying vec3 L;
varying vec3 V;
uniform vec4 lightAmbient;
uniform vec4 lightDiffuse;
uniform vecd4 lightSpecular;
//in this example, material color same for ambient, diffuse, specular
uniform vecd4 materialColor;
uniform float shininess;

52 Lightling a Sphere

void main () {
vec3 norm = normalize (N);
vec3 lightv = normalize (L);
vec3 viewv = normalize (V);

// diffuse coefficient
float Kd = max (0.0, dot (lightv, norm));

// calculating specular coefficient

// consider only specular light in same direction as normal
float cs;

if (dot (lightv, norm)>= 0.0) cs =1.0;

else cs = 0.0;

//reflection vector

vec3 r = 2.0 » dot (norm, lightv) » norm - lightv;
float Ks = pow(max (0.0, dot(r, viewv)), shininess);
vecd4d ambient = materialColor * lightAmbient;

vecd4 specular = cs * Ks » materialColor xlightSpecular;
vecd4 diffuse = Kd » materialColor x lightDiffuse;

gl_FragColor = ambient + diffuse + specular;

}

One can modify the code or juggle with it to obtain various lighting effects empirically.

Similar to previous examples, the OpenGL application has to provide the actual values of the
uniform and attribute parameters. The sphere is constructed in the same way that we did in
the previous example. However, we do not need to pass in the colors for each triangle as the
appearance of the sphere is now determined by its material color and the light colors, and the color
at each pixel is calculated by the fragment shader using the lighting model. The following code
shows how the application supplies the lighting parameters:

public class Sphere

float eyePos[] = {5f, 5f, 10f, 1f}; //viewing position
float lightPos[] = {5f, 10f, 5f, 1f}; //1light source position
float lightAmbi[] = {0.1f, 0.1f, 0.1f, 1f};//ambient light

float lightDiff[] {1f, 0.8f, 0.6f, 1f}; //diffuse light

float lightSpec[] = {0.3f, 0.2f, 0.1f,1f} ;//specular light
//material same for ambient, diffuse, and specular

float materialColor[] = {1f, 1f, 1f, 1f};

float shininess = 50f;

public void draw(float[] mvpMatrix) {
// Add program to OpenGL ES environment
GLES20.glUseProgram(program) ;
// get handle to shape’s transformation matrix
int mvpMatrixHandle=GLES20.glGetUniformLocation (program, "mvpMatrix");
// Pass the projection and view transformation to the shader
GLES20.glUniformMatrix4fv (mvpMatrixHandle, 1, false, mvpMatrix, O0);
// Pass lighting parameters
int eyePosHandle=GLES20.glGetUniformLocation (program, "eyePosition");
int lightPosHandle=GLES20.glGetUniformLocation (program,"lightPosition");
int lightAmbiHandle=GLES20.glGetUniformLocation (program, "lightAmbient");
int lightDiffHandle=GLES20.glGetUniformLocation (program,"lightDiffuse")
int lightSpecHandle=GLES20.glGetUniformLocation (program,"lightSpecular"

') ;

Chapter 6 Graphics with OpenGL ES 2.X 53

int materialColorHandle=GLES20.glGetUniformLocation (program,
"materialColor");
int shininessHandle=GLES20.glGetUniformLocation (program, "shininess");
GLES20.glUniform4fv (eyePosHandle, 1, eyePos, 0);
GLES20.glUniformé4fv (lightPosHandle, 1, lightPos, 0);
GLES20.glUniformd4fv (lightAmbiHandle, 1, lightAmbi, 0);
GLES20.glUniformd4fv (lightDiffHandle, 1, lightDiff, O0);
GLES20.glUniform4fv (lightSpecHandle, 1, lightSpec, 0);
GLES20.glUniformlf (shininessHandle, shininess);
GLES20.glUniformd4fv (materialColorHandle, 1, materialColor, 0);
int vertexStride = 0
// Draw the sphere
GLES20.glLineWidth (3);
for (int 1 = 0; 1 < nTriangles; i++){
int positionHandle=GLES20.glGetAttribLocation (program, "vPosition");
// Enable a handle to the triangle vertices
GLES20.glEnableVertexAttribArray(positionHandle);
GLES20.glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GLES20.GL_FLOAT, false, vertexStride, vertexBuffer);
GLES20.glDrawElements (GLES20.GL_TRIANGLES, drawOrders[i].length,
GLES20.GL_UNSIGNED_SHORT, sphereIndices[i]);
// Disable vertex array
GLES20.glDisableVertexAttribArray (positionHandle) ;

’

Figure 6-20 below shows an output of this application, where the same sphere of Figure 6-18
has been used.

Figure 6-20 Example Rendered Lit Sphere

54

Lightling a Sphere

Chapter 6 Graphics with OpenGL ES 2.X

55

	Chapter 5 File I/O and JNI
	5.1 Read Raw Data From File
	5.2 Read and Write Files
	5.2.1 Read Assets and Display Files
	5.2.2 Write to Files
	5.2.3 External Storage

	5.3 Android JNI
	5.3.1 Installing Android NDK
	5.3.2 A Simple Example of JNI
	5.3.3 A Simple JNI Example with UI

