
Chapter 7 Thread Programming

7.1 Processes and Threads

Processes are fundamental in any computing system. A process is a program in execution, plus the
data, the stack, registers, and all the resources required to run the program. We can create several
processes from the same program and each of them is considered as an independent execution unit.
A multitasking system allows several processes coexist in the system’s memory at the same time.
A process has different states, which can be one of the following as shown in Figure 7-1:

1. New: when the process is created.
2. Running: when instructions are executed, consuming CPU time.
3. Blocked: when the process is waiting for some event such as receiving a signal or complet-

ing an I/O task to happen.
4. Ready: when the process is temporarily stopped, letting another process run and waiting to

be assigned to a processor.
5. Terminated: when the process has finished execution.

The names are not unique and may be called differently in different systems but the states they
represent exist in every system. A system maintains a process table to keep track of the states of
the system’s processes.

Newg
Readyn Runningn

Blockedn Terminaten
Admitted

Selected to run

Quantum Expired Exit

I/O Request or
Event Wait

I/O Completed or
Event Completed

Figure 7-1. States of a Process or a Thread

A process could be bulky, consuming a lot of resources and has its own address space. It
performs its own thread of operation. Most modern operating system, including Android, extends
the process concept discussed to let a process to have multiple threads of operations, allowing it to
perform multiple tasks concurrently.

A thread, sometimes referred to as a lightweight process (LWP), is a basic unit of CPU uti-
lization. It has a thread ID to identify itself, a program counter (PC) to keep track of the next
instruction to be executed, a register set to hold its current working variables, and a stack to store
the execution history. A thread must execute in a process and shares with its peers the resources
allocated to the process. Threads make a system run much more effectively. For example, a web
browser might have one thread displaying text and images while another retrieving data from a

1

2 Thread Creation by Extending Thread Class

remote database. A word processor may have one thread accepting text inputs while another per-
forming spelling check in the background. A modern computing system can run thousands of
threads at the same time easily but running thousands of processes concurrently will consume so
much resources that it might make the system come to a halt. Figure 7-2 below compares a tradi-
tional single-threaded process with a multi-threaded process.

Code Data Files

Registers Stack

Thread

Code Data Files

Regs

Stack

Thread

Regs

Stack

Thread

Regs

Stack

Thread

Single-threaded Process Multi-threaded Process

Figure 7-2. Single-threaded and Multi-threaded Processes

The Android official site provides a discussion of Android processes and threads at

http://developer.android.com/guide/components/processes-and-threads.html

7.2 Java Threads

Since Android applications are developed using Java, Android threads inherit the properties of the
Java language, which includes direct support for threads at the language level for thread creation
and management. However, by design, Java does not support asynchronous behavior. For example,
if a Java program tries to connect to a server, the client is blocked, suspending its activities and
waiting for the establishment of a connection or the occurrence of a timeout. Typically, the Java
app creates a communication thread which attempts to make a connection to the server and a timer
thread which will sleep for the timeout duration. When the timer thread wakes up, it checks to
see whether the communication thread has finished establishing the connection. If not, the timer
thread generates a signal to stop the communication thread from continuing to try.

All Java programs comprise at least one single thread of control, consisting of a main() method,
running in the Java Virtual Machine (JVM). Correspondingly, a single-thread process (activity) of
Android contains the onCreate() method.

7.2.1 Thread Creation by Extending Thread Class

One way to create a thread is to extend the Thread class and to override its run() method as shown
in the following code:

public class CreateThread extends Activity
{

@Override
public void onCreate(Bundle savedInstanceState)

Chapter 7 Thread Programming 3

{
super.onCreate(savedInstanceState);
Athread t1 = new Athread();

t1.start();
System.out.println ("I am the main thread!");

}
}

class Athread extends Thread
{
public void run()
{

System.out.println ("I am a thread!");
}

}

If we create and run this program in the Eclipse IDE, we shall see outputs in the LogCat that
are similar to the following:

TID Application Tag Text
1650 example.createthread System.out I am a thread!
1650 example.createthread System.out I am the main thread!

7.2.2 Thread Creation by Implementing Runnable Interface

Another way to create a thread is to implement the Runnable interface directly, which is defined
as follows:

public interface Runnable
{

public abstract void run();
}

The Thread class that our program in the last section extends also implements the Runnable
interface.

This is why a class that extends Thread also needs to provide a run() method.
The following code shows a complete example of using this technique to create thread:

public class CreateThread1 extends Activity
{

@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
Athread1 t1 = new Athread1();

t1.run();
System.out.println ("I am the main thread!");

}
}

class Athread1 implements Runnable
{
public void run()
{

4 Thread Creation by Implementing Runnable Interface

System.out.println ("I am a thread!");
}

}

Again, if we run the code in the Eclipse IDE, we shall obtain outputs similar to those of the
previous section.

Each of the two techniques of creating threads has drawbacks and advantages and both are
equally popular. The advantage of the first technique, extending the Thread class, is that it can use
all the methods of the Thread class. However, since Java does not support multiple inheritance, if
a class has already extended another class, it will not be allowed to extend Thread, and we need
to use the second technique to create a thread. Of course, if a class implements the Runnable
interface and does not extend the Thread class, none of the the methods provided by Thread can
be used in the new class. In the above code, we cannot even use the start() method to start running
the thread!

The Thread class provides a few methods to manage threads, including:

1. stop(): Terminates the thread. Once a thread has been terminated, it cannot be resumed or
restarted.

2. suspend(): Suspends execution of the running thread. A suspended thread can be resumed
to run.

3. sleep(): Puts the running thread to sleep for a specified amount of time.
4. resume(): Resumes execution of the suspended thread.

If we construct directly an instance of a class that implements Runnable like what we did above,
we cannot use any of these methods; a better way to construct a thread with this technique is to pass
the object variable of the class as an input parameter to the Thread class constructor as follows:

public class CreateThread1 extends Activity
{
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);

Runnable runner = new Athread1 ();
Thread t1 = new Thread (runner);
t1.start();
System.out.println ("I am the main thread!");

}
}

Besides the threads created by users, a Java environment has a few threads running asyn-
chronously on behalf of the Java Virtual Machine (JVM). These system threads carry out house-
keeping tasks such as memory management and memory controls. In particular, the garbage-
collector (GC) thread examines objects in the system to check whether they are alive. Anything
that is not alive is designated as garbage and is returned to the memory heap. This garbage collec-
tion mechanism allows developers to create objects without worrying about allocation and deallo-
cation of memory. This would eliminate memory-leak problems and help developers create more
robust programs in a shorter time. Other interesting system threads include the timer thread, which
can be used to schedule tasks and handle time events, and the graphics control threads, which can
be used to update the screen and control user interface events such as clicking a button.

Chapter 7 Thread Programming 5

7.2.3 Wait for a Thread

Very often after a parent has created a thread, the parent would like to wait for the child thread to
complete before its own exit. This can be done using the join() method of the Thread class. The
method forces one thread to wait for the completion of another. Suppose t is a Thread object. The
statement

t.join();

causes the currently executing thread to pause execution until Thread t terminates. A programmer
may specify a waiting period by overloading the join() method. Like sleep, join depends on the
OS for timing. So we should not assume that join will wait for the exact amount of time that we
have specified.

Like sleep, when join is interrupted, it exits with an InterruptedException.
We present below an example of multi-threaded programming and the usage of join. In this

example, we use a number of threads to multiply two matrices. The multiplication of an M × L
matrix A and an L×N matrix B gives an M ×N matrix C, and is given by the formula,

Cij =
L−1∑
k=0

AikBkj 0 ≤ i < M, 0 ≤ j < N (7.1)

Basically, each element Cij is the dot product of the i-th row vector of A with the j-th column
vector of B. We use one thread to calculate a dot product. Therefore, we totally need M × N
threads to calculate all the elements of matrix C. The calculating threads are created by the main
thread, which must wait for all of them to complete. The following is the complete code for the
program.

Program Listing 7-1 Multithreaded Matrix Multiplication
——————————————————————————————————-

public class MatMulActivity extends Activity
{
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
double a[][] = {{1, 2, 3}, {4, 5, 6}};
double b[][] = { {1, -1}, {-1, 1}, {1, 1} };
final int numRows = a.length;
final int numCols = b[0].length;
final int nThreads = numRows * numCols;
double c[][] = new double[numRows][numCols];
int k = 0;

System.out.println ("Matrix a: ");
printMat (a);
System.out.println ("Matrix b: ");
printMat (b);

Thread threads[] = new Thread[nThreads];
System.out.println ("I am the main thread!");

for (int i = 0; i < numRows; i++) //row

6 Wait for a Thread

for (int j = 0; j < numCols; j++) { //column
threads[k] = new MatMul (i, j, a, b, c);
threads[k].start();
k++;

}
try {

for (int i = 0; i < k; i++)
threads[i].join(); //wait for threads[i] to complete

} catch (InterruptedException e) {}

System.out.println ("Matrix c = a x b: ");
printMat (c);

}

//print a matrix
public static void printMat (double a[][])
{

int numRows = a.length;
int numCols = a[0].length;

for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {
System.out.printf ("%6.2f, ", a[i][j]);

}
System.out.printf("\n");

}
}

}

//Thread calculates dot product of a row-vector and a column-vector
class MatMul extends Thread
{
private int row, col;
private double a[][];
private double b[][];
private double c[][];

//Calculate dot product of row-vector a0[row0] and column vector
// b0[][col0]. Save result in c0[row0][col0].
public MatMul(int row0, int col0, double a0[][], double b0[][],

double c0[][])
{

row = row0;
col = col0;
a = a0;
b = b0;
c = c0;

}

public void run()
{

System.out.println ("I am a MatMul thread!");
double sum = 0.0;
int n = a[0].length; //number of columns

Chapter 7 Thread Programming 7

for (int i = 0; i < n; i++)
sum += a[row][i] * b[i][col];

c[row][col] = sum;
}

}

——————————————————————————————————-
When we run the program in Eclipse IDE, we will see in the LogCat some outputs similar to the
following:

System.out: Matrix a:
System.out: 1.00, 2.00, 3.00,
System.out: 4.00, 5.00, 6.00,
System.out: Matrix b:
System.out: 1.00, -1.00,
System.out: -1.00, 1.00,
System.out: 1.00, 1.00,
System.out: I am the main thread!
System.out: I am a MatMul thread!
System.out: I am a MatMul thread!
System.out: I am a MatMul thread!
System.out: I am a MatMul thread!
System.out: Matrix c = a x b:
System.out: 2.00, 4.00,
System.out: 5.00, 7.00,

7.3 Synchronization

In a multitasking system, several threads may be running at the same time (concurrently). There
are situations that the activities of the threads need to be synchronized so that the activity of one
thread will not interfere or disturb the activity of another. For example, we certainly do not want
two threads to print something simultaneously using the same printer. Figure 7-3 shows a World
War I Fighter Aircraft, which can be used to illustrate the concept of synchronization. In the days
of World War I, the engineering of fighter aircrats was relatively primitive. A machine gun was
mounted in front of the pilot but behind whirling propeller. At the beginning of the war, a pilot
would not shoot enemy aircrafts which were at the same altitude as the bullets might damage the
propeller of his own fighter. Later, the Germans could fly their more advanced aircrafts higher; a
German pilot would turn off the engine at higher altitude, diving at the enemy fighter and firing
without hitting the propeller. This is an example of mutual exclusion where only one event can
occur at a time, either running the propeller or firing the machine gun. This would be called coarse-
grained synchronization. The Germans later developed even more advanced technologies that
automatically synchronized the propeller whirling and gun firing, so that bullets were shot only
when their blades were not in the way. This would be called fine-grained synchronization.

7.3.1 Mutual Exclusion

In a computing system, very often resources are shared among threads. Some resource such as
a printer, a memory segment or a file may allow only one thread to access it at a time. The
requirement to ensure that only one thread or process is accessing such a shared resource is referred
to as mutual exclusion. Of course, a thread is a running program and it executes a certain code
segment to access the resources. To deny a thread to access a resource means to deny the thread

8 Mutual Exclusion

to execute the corresponding piece of code segment that access the resource. A code segment in a
process in which a shared resource is access is referred to as a critical section. When the program
is about to execute the code segment, we literally say that it is entering the critical section, and
when it is finishing its execution, we say that it is leaving the critical section. Situations where two
or more threads are competing to enter a critical section is referred to as race conditions. Mutual
exclusion is often abbreviated to mutex.

Figure 7-3 World War I Fighter Aircraft

Achieving mutual exclusion usually involves some locking mechanisms. It is in analogy of the
situation when we access a small public restroom that allows only one a person to use it at one time
such as one in a small Starbuck or fast food restaurant. When a lady wants to use the restroom, she
first examines whether it is vacant (unlocked) or occupied (locked). If it is locked, she will wait
until it is unlocked. If it is unlocked, she will lock it and use it; when she has finished using it, she
unlocks the restroom and leaves it. In general, mutual exclusion for accessing a critical section is
achieved by following the steps:

1. Create a lock to protect the shared resource.
2. Acquire the lock.
3. Enter the critical section (accessing the shared resource).
4. Release the lock.

In practice, all threads should be able to enter a critical section in finite time. That is, no
thread will be in a starvation state, waiting infinitely for the desired resource. Another important
requirement to achieve mutual exclusion is that the locking and unlocking process must be atomic,
which means that the action is indivisible. Once it is started, it will not be interrupted by any other
thread. In our restroom analogy, when a lady is locking the restroom halfway, no other customer
is allowed to enter the restroom to do the same thing. In a computing system, the mechanism is
usually achieved with the help of special hardware instructions.

Java uses a concept called monitor to achieve synchronization. Every Java object is associated
with a lock. Any attempt to lock a monitor that has been locked causes the thread to wait until the
lock is released (unless the owner of the lock itself is trying to acquire the lock again). However,
Java synchronization is block-based. That is, instead of locking the whole object, a thread is
able to lock a block of code. This implies that normally the lock is ignored when the object is
being accessed; any method or block of code can be accessed as usual unless it is declared as
synchronized.

A Java thread can always put a lock on a synchronized block of code whenever it needs and
releases the lock as it desires. But if a synchronized block has been locked by a thread, no other

Chapter 7 Thread Programming 9

thread can access any synchronized method of the object. This mechanism is achieved by using
the keyword synchronized in the declaration of a method or a block of code in the class. The JVM
ensures that only one thread is allowed to lock a method or a block of statements at any instance
while other threads remain active, being able to access other availble methods and objects.

A thread calling a synchronized method must first own the lock before it can access the method.
If the lock has been acquired by another thread, the calling thread blocks itself and is put in a
waiting set, waiting to be waken up to acquire the lock. The following is an example of using the
keyword synchronized:

public class Score
{
private double score;
private double total;

public synchronized void setScore (double s)
{

score = s;
}

public synchronized void addScore (double s)
{

total += s;
}

public double getScore ()
{

return score;
}
.....

}

In the example, at any instance only one thread is allowed to access the method setScore()
or addScore)(). When a thread is accessing setScore(), another thread cannot access the other
synchronized method addScore() but it can access getScore(). Here the method getScore() is
not synchronized, so multiple threads can access it at the same time without acquiring the lock.
This is in analogy of clients accessing the rooms of a building, where some rooms have a lock
and others do not. Only one key exists, held by a receptionist at the entrance of the building, and
the key can open all lock-rooms. A client can always enter any room that does not have a lock.
However, if she wants to enter any room that has a lock, she must first acquire the key. If the key
has been checked out, she must wait. When she is done using the lock-room, she would return
the key to the receptionist. In this analogy, the same key is used to access all the rooms that has
a lock corresponding to the situation that only one synchronized method can be accessed within
an object. In other words, only one thread is active inside a monitor. This defeats the purpose of
concurrency and could be a drawback of of using a monitor to achieve synchronization in some
applications; this shortcoming may be remedied using a tool called serializer, which is similar to
a monitor except that it contains a special code section called hollow region, where threads can be
concurrently active. The discussion of serializer is beyond the scope of this book.

As an example of using synchronized methods, we use the synchronized keyword to write a
Lock class that can lock any statement or a block of statements:

public class Lock
{
private boolean locked = false;

10 Semaphore

public synchronized void lock () throws InterruptedException
{

while (locked)
wait();

locked = true;
}

public synchronized void unlock()
{

locked = false;
notify();

}
}

The wait method is to wait for a signal to wake up the thread. When a thread calls wait(),
the state of the thread is set to Blocked (see Figure 7-1), and the thread is put in a waiting set
for the synchronized block. The notify method is to send a signal to wake up a thread chosen
randomly from the waiting set and the awaken thread is placed in the ready queue shown in Figure
7-1. Using this Lock class, we can implement the Score class like the following without using the
synchronized keyword explicitly:

public class Score
{
private double score;
private Lock lock = new Lock();

public void setScore (double s)
{

try {
lock.lock();

} catch (InterruptedException e) {
e.printStackTrace();

}
score = s;
lock.unlock();

}
.....

}

Starting from Java 5, Java provides a lock package that implements a number of locking mech-
anisms. So you may not need to implement your own locks. To use the package, you just need to
add the import statement:

import java.util.concurrent.locks.*;

7.3.2 Semaphore

Mutual exclusion ensures that only one thread is accessing a shared resource at one time. It is
a very common form of synchronization. However, in many applications we may want to allow
more than one thread to access a resource simultaneously but will block further threads from
accessing when the current number of threads using the resource has reached a certain number.
For example, we want to limit the number of clients reading a web site simultaneously but would
let more than one client to read it at the same time. Problems like this and many others cannot
be handled by mutual exclusion. They can be solved using the semaphore, a synchronization
operation introduced by the renown Computer Scientist E.W. Dijkstra in the 1960s.

Chapter 7 Thread Programming 11

A semaphore S is an integer variable, which, apart from initialization, is accessed through two
standard atomic operations called down and up. Many people also call the two operations wait
and signal or P and V respectively. Less often, some people refer to the two operations as lock
and unlock. The names P and V were given by Dijkstra who was Dutch and in Dutch, they may
be the initials of two words meaning decrement and increment:

down(S): an atomic operation that waits for semaphore S to become positive, then
decrements it by 1; also referred to as wait(S) or P(S).

up(S) : an atomic operation that increments semaphore S by 1;
also referred to as signal(S) or V(S).

We use the following notations to describe the atomic operations down and up. The down(S)
operation is given by:

when (S > 0) [
S = S − 1;

]

In the above code, the statements enclosed by the square brackets are referred to as the command
sequence, and the expression following when is referred to as the guard. The command sequence
is executed only when the guard is true. The entire code segment is known as a guarded command,
which is always executed atomically. That is, no other operations could interfere with it while it is
executing.

The up(S) operation is simpler, simply incrementing S by 1:

[S = S + 1;]

Apart from initialization, there is no other way for manipulating the value of a semaphore
besides these two operations. Therefore, if S is initially 1 and two threads concurrently operate on
it, one executing down, the other up, then the resulting value of S is always 1. If its initial value is
0 and the two concurrent threads are executing down and up, the thread executing down must wait
until the other thread finishes the up operation that makes the semaphore’s value positive. Then
the waiting thread will finish its down operation, decrementing the semaphore’s value to 0.

If a semaphore’s value is restricted to 0, and 1, it is referred to as a binary semaphore. Regular
semaphores with no such restriction are usually called counting semaphores. Binary semaphores
are implemented in the same way as regular semaphores except multiple up operations will not
increase the semaphore value to anything greater than 1.

When a thread executes the down operation and finds that the semaphore value is not positive, it
must wait. However, rather than busy waiting, the thread can block itself, placing itself in a waiting
queue associated with the semaphore, and the state of the thread is switched to the sleeping state
(blocked state). The sleeping thread is restarted by a signal (wakeup) associated with the up
operation.

In Java, a semaphore can be implemented by making use of the synchronized keyword. Listing
7-2 below shows an example of implementing semaphore.

Program Listing 7-2 Sample Semaphore Implementation
——————————————————————————————————-

public final class Semaphore
{
private int S;

// default initial value is 0
public Semaphore() {

12 Semaphore

S = 0;
}

// initialization of semaphore value
public Semaphore(int v) {

S = v;
}

// keyword synchronized makes the method ’atomic’ and
// mutual-exclusive; only one object can access it at one time
public synchronized void down() {

while (S == 0) {
try {

wait(); // Causes current thread to wait until another
// thread invokes the notify() method or the
// notifyAll() method for this object.

}
catch (InterruptedException e) { }

}
S--; // decrement semaphore value

}

public synchronized void up() {
S++; // increment semaphore value
notify(); // wakes up a single thread that is waiting on

// this object’s monitor.
}

}

——————————————————————————————————-
In the code, the keyword final means the class cannot be further extended. The keyword synchro-
nize guarantees mutual exclusion and that when a thread executes the up or down operation, no
other thread can interfere.

Listing 7-3 presents a demo program showing how to use a semaphore to access a simulated
critical section.

Program Listing 7-3 Simulating Usage of Semaphore
——————————————————————————————————-

public class SemaphoreTest extends Activity
{
@Override
protected void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_semaphore_test);
//initialize semaphore with value 1
Semaphore semaphore = new Semaphore (1);

final int nThreads = 10;

Athread[] threads = new Athread[nThreads];
/*
Semaphore semamphore is shared among the Athread objects.
Because of the synchronized keyword, only one Athread

Chapter 7 Thread Programming 13

can ’access’ it at a time.

*/
for (int i = 0; i < nThreads; i++)

threads[i] = new Athread (semaphore, "Athread " +
(new Integer(i)).toString());

for (int i = 0; i < nThreads; i++)
threads[i].start();

}
}

class Tasks
{

// simulate a critical section
public static void criticalSection() {

try {
Thread.sleep((int) (Math.random() * 3000));

}
catch (InterruptedException e) { }

}

// simulate a noncritical section
public static void nonCriticalSection() {

try {
Thread.sleep((int) (Math.random() * 3000));

}
catch (InterruptedException e) { }

}
}

class Athread extends Thread
{

private Semaphore s;
private String tname;

public Athread (Semaphore s0, String name) {
tname = name;
s = s0;

}

public void run()
{
while (true) {

System.out.println (tname + " trying to enter CS");
s.down();
System.out.println (tname + " entering CS");
Tasks.criticalSection();
System.out.println (tname + " exited CS");
s.up();

Tasks.nonCriticalSection();
}

}
}

14 Producer-Consumer Problem

——————————————————————————————————-
When we run the program in the Eclipse IDE, we will see in the LogCat outputs similar to the
following:

Athread 0 trying to enter CS
Athread 0 entering CS
Athread 1 trying to enter CS
Athread 2 trying to enter CS
.....
Athread 0 exited CS
Athread 1 entering CS
Athread 1 exited CS
.....

7.3.3 Producer-Consumer Problem

The producer-consumer problem is a common paradigm for thread synchronization and we use it
as an example to illustrate the usage of semaphores in synchronization. This problem also will be
used to solve practical problems in later chapters.

In the problem, a producer thread produces information which is consumed by a consumer
thread. This is in analogy with whats happening in a fast-food restaurant. The chef produces
food items and put them on a shelf; the customers consume the food items from the shelf. If the
chef makes food too fast and the shelf is full, she must wait. On the other hand, if the customers
consume food too fast and the shelf is empty, the customers must wait.

To allow producer and consumer threads to run concurrently (simultaneously), we must make
available a buffer (like the shelf in our fast-food analogy) that can hold a number of items and be
shared by the two threads; the producer fills the buffer with items while the consumer empties it.
A producer can produce an item while the consumer is consuming another item. Trouble arises
when the producer wants to put a new item in the buffer, which is already full. The solution is
for the producer to go to sleep, to be awakened when the consumer has removed one or more
items. Similarly, if the consumer wants to remove an item from the buffer and finds it empty, it
goes to sleep until the producer puts something in the buffer and wakes the consumer up. The
unbounded-buffer producer-consumer problem places no practical limit on the size of the buffer.
The consumer may have to wait for new items, but the producer can always produce new items
without waiting. The bounded-buffer producer-consumer problem puts a limit on the buffer size;
the consumer must wait when the buffer is empty, and the producer must wait when the buffer is
full.

The approach sounds simple enough, but if not properly handled, the two threads may race to
access the buffer and the final outcome depends on who runs first.

In many practical applications, we may use a circular queue to hold more than one item at a
time. The producer inserts an item at the tail of the queue and the consumer removes an item
at the head of it. We advance the tail and head pointers after an insert and a remove operation
respectively. The pointers wrap around when they reach the “end” of the queue. If the tail reaches
the head, the queue is full and the producer has to sleep. If the head catches up with the tail, the
queue is empty and the consumer has to sleep. Actually, such a queue may handle the situation of
multiple producers and multiple consumers. This concept is illustrated in Figure 7-4 below.

Physically, a bounded-buffer is a circular queue. However, logically, we can consider it as a
linear queue extending to infinity as shown in Figure 7-5; using this model, when head = tail,
the bounded-buffer is empty, and when tail − head = buffer size (which is 8 in this example),
the buffer is full. We increment tail when an item is inserted and increment head when an item is
removed from the buffer. The increment operations should be done mutual-exclusively. Therefore,
we can define two synchronized methods in the same class to perform the operations.

Chapter 7 Thread Programming 15

0

1

2

34

5

6

7

head (remove)

tail (insert)

Figure 7-4. Circular Queue with Eight Slots

To simplify things, we make all operations on the tail and the head of the circular buffer syn-
chronized. That is, only one thread is allowed to perform an operation at one time. We also
assume that the variables head and tail have large enough bit fields that they never overflow in
the applications.

0 1 2 3 4 5 6 7 8 9

head (remove) tail (insert)

Figure 7-5. Infinite Linear Queue

Listing 7-4 below presents a simple solution to the problem. Certainly this is not the best so-
lution as it only allows one thread to operate on a slot of the buffer at a time. A better solution
would allow multiple threads to access the buffer and operate on the slots simultaneously as long
as they work on different slots. An object of the BoudedBuffer class is to be shared by a number
of producer and consumer threads.

Program Listing 7-4 Shared BoundedBuffer in the Producer-Consumer Problem
——————————————————————————————————-

// Buffer shared by threads
public class BoundedBuffer
{

public double buffer[];
private int head;
private int tail;
public int length; //number of slots in buffer

//default constructor
BoundedBuffer ()
{

head = tail = 0;
length = 1;

16 Producer-Consumer Problem

buffer = new double[length];
}

BoundedBuffer (int len)
{

head = tail = 0;
if (len > 0)

length = len;
else

length = 1;
buffer = new double[length];

}

public synchronized int insert (double item)
{

// insert only if the buffer is not full
while (tail >= head + length){

try {
System.out.println("Buffer full, producer waits.");
wait();

} catch (InterruptedException e) {
e.printStackTrace();
}

}
int t = tail % length;
buffer[t] = item; //insert item at tail of queue
tail++; //advance tail
notifyAll(); //wake up all waiting threads

return t; //returns slot position of insertion
}

//remove only if buffer not empty,returns value in item0[0]
public synchronized int remove (double item0[])
{

while (tail <= head){ //Buffer empty
try {
System.out.println("Buffer empty, consumer waits.");
wait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
int h = head % length;
item0[0] = buffer[h]; //delete at head
head++;
notifyAll(); //wakeup all waiting threads

return h; //returns slot position of removal
}

}

——————————————————————————————————-

Listing 7-5 below shows a typical usage of the shared BoundedBuffer in a producer-consumer

Chapter 7 Thread Programming 17

case. In the example, the buffer has five slots, and a Producer class and a Consumer class are pre-
sented. Four Consumer threads and three Producer threads are created to simulate the production
and consumption operations.

Program Listing 7-5 An Example of Producer-Consumer Problem using BoundedBuffer
——————————————————————————————————-

public class ProducerConsumerMain extends Activity
{
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
final int n1 = 4, n2 = 3;
final int length = 5;
//shared buffer
BoundedBuffer buffer = new BoundedBuffer (length);

//Create n1 Consumer threads and n2 Producer threads
Consumer [] cons = new Consumer[n1];
Producer [] prods = new Producer[n2];
for (int i = 0; i < n1; i++)

cons[i] = new Consumer(buffer,"Consumer " +
(new Integer(i)).toString());

for (int i = 0; i < n2; i++)
prods[i] = new Producer(buffer,"Producer " +

(new Integer(i)).toString());

//start the threads
for (int i = 0; i < n1; i++)

cons[i].start();
for (int i = 0; i < n2; i++)

prods[i].start();
}

class Producer extends Thread
{
private BoundedBuffer buffer;
private String tname;

public Producer (BoundedBuffer b, String name)
{

buffer = b;
tname = name;

}

double produceItem()
{

double x = Math.random();
return x;

}

public void run()
{

int p;
while (true) {

18 Producer-Consumer Problem

double item = produceItem();

int t = buffer.insert (item);
System.out.printf("%s inserted into slot %d value:\t%1.3f\n",

tname, t, item);
try {

Thread.sleep((int) (Math.random() * 2000));
} catch (InterruptedException e) { }

}
}

}

class Consumer extends Thread
{
private BoundedBuffer buffer;
private String tname;

public Consumer (BoundedBuffer b, String name) {
buffer = b;
tname = name;

}

public void run()
{

double [] item = new double[1]; //holds one item
int h;
while (true) {

h = buffer.remove(item);
System.out.printf("%s got from slot %d value:\t%1.3f\n",

tname,h,item[0]);
try {
Thread.sleep((int) (Math.random() * 3000));

} catch (InterruptedException e) { }
}

}
}

——————————————————————————————————-

When we run the program using Eclipse IDE, we will see in the LogCat console messages
similar to the following:

Buffer empty, consumer waits.
Buffer empty, consumer waits.
Buffer empty, consumer waits.
Buffer empty, consumer waits.
Producer 0 inserted into slot 0 value: 0.024
Buffer empty, consumer waits.
Consumer 3 got from slot 0 value: 0.024
Buffer empty, consumer waits.
Buffer empty, consumer waits.
Producer 2 inserted into slot 1 value: 0.550
Producer 1 inserted into slot 2 value: 0.883
Consumer 0 got from slot 1 value: 0.550
Consumer 1 got from slot 2 value: 0.883
Buffer empty, consumer waits.

Chapter 7 Thread Programming 19

Producer 2 inserted into slot 3 value: 0.779
Consumer 2 got from slot 3 value: 0.779
Producer 0 inserted into slot 4 value: 0.224
Producer 1 inserted into slot 0 value: 0.540
Producer 1 inserted into slot 1 value: 0.078
......

7.3.4 Condition Variable

We have seen that semaphores are elegant tools, which can be conveniently used to solve many syn-
chronization problems. However, for many other problems, it is cumbersome to use semaphores
and their solutions expressed in semaphores could be complex. Therefore, many computing sys-
tems, including Android, provide an additional construct called condition variable for concurrent
programming. A condition variable is a queue of threads (or processes) waiting for some sort of
notifications. This construct has been supported by POSIX , SDL (Simple DirectMedia Layer),
and Win-32 events in C/C++ programming environments. The Java utility library and the Android
platform both provide support of this construct.

A condition variable queue can only be accessed with two methods associated with its queue.
These methods are typically called wait and signal. The signal method is also referred to as notify
in Java. This tool provides programmers a convenient way to implement guarded commands.
Threads waiting for a guard to become true enter the queue. Threads that change the guard from
false to true could wake up the waiting threads in the queue.

The following code segments show the general approach presented in guarded commands and
an outline of implementation using Android Java with exception code omitted.

Guarded Command Android Implementation

When (guard) [
statement 1
.....

statement n
]

class SharedResource
{

final Lock mutex = new ReentrantLock();
final Condition condVar = mutex.newCondition();
boolean condition = false;
.....
public void methodA() throws InterruptedException
{

mutex.lock();
while (!condition);

condVar.await();
statement 1
.....
statement n
mutex.unlock();

}
.....
}

The above code shows that the execution of statements is protected by a guard. In the Android
implementation, to evaluate a guard safely, a thread must mutually exclude all other threads eval-
uating it. This is accomplished by declaring a condition variable, (condVar in the example), which
always associate with a lock (mutex in the example). The thread first locks the lock mutex to
achieve mutual exclusion. If the guard is true, the thread can execute the command sequence, still

20 Condition Variable

locking mutex. It unlocks mutex only when all statements of the command sequence have been
executed.

An interesting situation arises when the guard is false, which makes the thread execute the
await() method of the condition variable condVar; the operation puts the thread in the queue of the
condition variable and the thread is suspended. It seems that the thread would wait forever in the
queue as the guard is locked by mutex and no other thread can access it. But what we want is that
the thread waits until the guard becomes true. Here is what the condition variable comes into play.
Right before the thread enters the queue and gets suspended, it unlocks mutex temporarily so that
another thread can change the value of the guard. The thread that changes the guard from false to
true is also responsible for waking up the waiting thread.

So the await() method of a condition variable works in the following way.

1. It causes the current thread to wait until it is signaled or interrupted.
2. The lock associated with the condition variable is atomically released and the current thread

is suspended until one of four events happens:

(a) Some other thread executes the signal() method of this condition variable and the
current thread happens to be selected from the queue as the thread to be awakened.

(b) Some other thread executes the signalAll() method of this condition variable, which
wakes up all waiting threads in the queue.

(c) The current thread is interrupted by some other thread, and interruption of thread sus-
pension is supported.

(d) An event of spurious wakeup occurs.

In any of the four cases when the current thread wakes up, before the method returns, the
thread must re-acquire the lock associated with the condition variable. This guarantees that
the thread works in the same way when the guard is true at the beginning.

The following code segment shows the situation that the guard is modified by a thread.

Guarded Command Android Implementation

//code modifying guard
.....

]

class SharedResource
{

.....
public void methodB() throws InterruptedException
{

mutex.lock();
condition = true; //or code modifying guard
.....
condVar.signal();
mutex.unlock();

}
}

Android provides two classes, Condition and ConditionVariable, to create condition variable
objects. The Condition class is provided by the Java utility library. It uses the method signal() to
wake up one waiting thread, and signalAll() to wake up all waiting threads.

The class ConditionVariable, which implements the condition variable paradigm, is unique
to Android, not supported by traditional Java. Its methods open, close, and block are sticky,
its exact function depending on the state of the thread. The method open corresponds to the
traditional signalAll method that releases all threads that are blocked (waiting). The method block
corresponds to the traditional wait method, which blocks the current thread until the condition

Chapter 7 Thread Programming 21

becomes true (or opened in the Android’s documentation). If open is called before block, the
method block will not block but instead returns spontaneously.

As a condition variable always associates with a lock, to use the Condition class, we need to
include in our program the import statments:

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

To use ConditionVariable, we need to include:

import android.os.ConditionVariable;

Now we can present a solution to the producer-consumer problem using condition variables.
We rewrite the BoudedBuffer class discussed above with use of condition variables. Here, for sim-
plicity and clarity of presentation, we hard-code the buffer size, omit the print statements and do
not return the current head and tail positions of the queue. We use two condition variables notFull
and notEmpty for the producer threads to wait until the buffer is not full and the consumer threads
to wait until the buffer is not empty. The lock mutex is to ensure that only one thread is examining
the status buffer; the thread releases mutex if it has to wait for the condition to become true and
re-acquire it when it is awakened. The complete code of the class is shown in Listing 7-6 below.

Program Listing 7-6 Implementation of BoundedBuffer with Condition Variables
——————————————————————————————————-

class BoundedBuffer
{
final Lock mutex = new ReentrantLock();
final Condition notFull = mutex.newCondition();
final Condition notEmpty = mutex.newCondition();
final int length = 100;
final Object[] items = new Object[length];
int tail, head;

public void insert (Object x) throws InterruptedException
{

mutex.lock(); //Exclude others while examining guard
try {

while (tail >= head + length) //buffer full
notFull.await(); //wait until buffer not full
int t = tail % length;
items[t] = x; //insert item at tail
tail++; //advance tail
notEmpty.signal();

} finally {
mutex.unlock();

}
}

public Object remove() throws InterruptedException
{

mutex.lock();
try {

while (tail == head) //buffer empty
notEmpty.await(); //wait until buffer not empty

22 Readers-Writers Problem

int h = head % length;
Object x = items[h];
head++; //Advance head
notFull.signal();
return x;

} finally {
mutex.unlock();

}
}

}

——————————————————————————————————-

7.3.5 Readers-Writers Problem

The readers-writers problem concerns the access of a shared file or database, where some threads,
known as readers, may want to read the shared resource, whereas others, known as writers, may
want to write to it. The problem allows concurrent reads but mutual exclusion must be maintained
when a writer modifies the data. This is a good example of a synchronization problem that lacks an
elegant solution using semaphores only, but can be solved conveniently using condition variables.
The following code presents a solution expressed using guarded commands:

void reader() {
when (nWriters == 0) [

nReaders++;
]

// read

[nReaders–;]
}

void writer() {
when(nReaders==0 && nWriters==0)[

nWriters++;
]

// write

[nWriters–]
}

In the code, nReaders is the number of readers, the number of threads that are currently reading,
and nWriters is the number of writers that are currently writing. Listing 7-7 below shows an An-
droid implementation of this solution.

Program Listing 7-7 Readers-Writers Problem with Condition Variables
————————————————————————————————————–

class ReaderWriter
{
final Lock mutex = new ReentrantLock();
final Condition readerQueue=mutex.newCondition();//cond variable
final Condition writerQueue=mutex.newCondition();//cond variable

int nReaders = 0; //number of reader threads
int nWriters = 0; //number of writer threads (0 or 1)

void reader() throws InterruptedException
{

mutex.lock(); //mutual exclusion
while (!(nWriters == 0))

Chapter 7 Thread Programming 23

readerQueue.await();//wait in readerQueue till no more writers
nReaders++; //one more reader
mutex.unlock();
//read
//........
//finished reading
mutex.lock(); //need mutual exclusion
if (--nReaders == 0)

writerQueue.signal(); //wake up a waiting writer
mutex.unlock();

}

void writer() throws InterruptedException
{

mutex.lock();
while (!((nReaders == 0) && (nWriters == 0)))

writerQueue.await(); //wait in writerQueue
// until no more writer & readers

nWriters++; //one writer
mutex.unlock();
//write
//........
//finished writing
mutex.lock(); //need mutual exclusion
nWriters--; //only one writer at a time
writerQueue.signal(); //wake up a waiting writer
readerQueue.signalAll(); //wake up all waiting readers
mutex.unlock();

}
}

————————————————————————————————————–

Here readers wait on the condition variable readerQueue when the number of writers is not 0,
indicating a thread is modifying the data. The writers wait on the condition variable writerQueue
when either nReaders or nWriters is not zero, indicating the presence of some threads that are
reading or a thread that is writing. When a reader thread has finished reading and finds that no
more thread is reading, it wakes up all the first waiting writers and all the waiting readers. The
awakened threads will all try to acquire the mutex lock. If one of the readers gets the lock first,
reading occurs with the awakened writer thread waiting, otherwise writing takes palce and all
readers have to wait.

Some readers might have noticed that if readers arrive frequently, the writer thread may be in
starvation, never getting a chance to write. This problem is actually referred to as the readers-
writers problem with readers priority. This is in analogy of the situation that a female janitor tries
to clean a gentlemen restroom. She has to wait until all users have left. If the restroom is heavily
used and gentlemen arrive continuously, she will never have a chance to clean it. In practice, to
resolve the issue, she would put up a sign to block new entries and enter the men’s room after the
last current user has left.

In the same way, the starvation issue in the readers-writers problem can be solved by giving
writers higher priorities, and the problem is now referred to as readers-writers problem with writers
priority. The writers-priority solution is to let the writer just wait for current readers to finish and
block newly arrived readers. The following code presents a solution in guarded commands:

24 Readers-Writers Problem

void reader() {
when (nWriters == 0) [

nReaders++;
]

// read

[nReaders–;]
}

void writer() {
nWriters++;
when(nReaders==0 && nActiveWriters==0)[

nActiveWriters++;
]

// write

[nWriters–; nActiveWriters;]
}

In this code, nWriters represents the number of writers that have arrived, either currently writing
or waiting to write. The new variable nActiveWriters, which can either be 0 or 1, represents the
number of writers that are currently writing. Readers must now wait until no more writers, either
writing or waiting to write, has arrived. Writers wait as before, until no other threads are reading
or writing.

The Android implementation of this solution is presented in Listing 7-8 below:

Program Listing 7-8 Solution of Readers-Writers Problem with Writers-Priority
————————————————————————————————————–

class ReaderWriterPriority
{
final Lock mutex = new ReentrantLock();
final Condition readerQueue = mutex.newCondition(); //cond variable
final Condition writerQueue = mutex.newCondition(); //cond variable

int nReaders = 0; //number of reader threads
int nWriters = 0; //number of writer threads (0 or 1)
int nActiveWriters = 0; //number of threads currently writing

void reader() throws InterruptedException
{

mutex.lock(); //mutual exclusion
while (!(nWriters == 0))

readerQueue.await();//wait in readerQueue until no more writers
nReaders++; //one more reader
mutex.unlock();
//read
//........
//finished reading
mutex.lock(); //need mutual exclusion
if (--nReaders == 0)

writerQueue.signal(); //wake up a waiting writer
mutex.unlock();

}

void writer() throws InterruptedException
{

mutex.lock();
nWriters++; //a writer has arrived
while (!((nReaders == 0) && (nActiveWriters == 0)))

writerQueue.await(); //wait in writerQueue

Chapter 7 Thread Programming 25

// until no more writer & readers
nActiveWriters++; //one active writer
mutex.unlock();
//write
//........
//finished writing
mutex.lock(); //need mutual exclusion
nActiveWriters--; //only one active writer at a time
if (--nWriters == 0) //no more waiting writers, so wake

readerQueue.signalAll();// up all waiting readers
else //has waiting writer

writerQueue.signal(); //wake up one waiting writer
mutex.unlock();

}
}

————————————————————————————————————–

7.4 Deadlocks

Suppose you have a turkey dinner with your siblings and cousins and all of you are highly civilized
like what is shown in Figure 7-6. There is a cooked whole turkey on the table. Also on the table
are a public knife and a public fork, which will be shared by all of you. If you want to eat turkey
meat you must first acquire the public knife and the public fork to cut a piece and put it on your
own private plate. After returning the knife and the fork to the table, you can begin to enjoy eating
your turkey meat using your own private utensils. If each of you acquires the tools (knife and
fork) one by one, you may run into a situation in which you have acquired the knife and your little
brother has acquired the fork. If no one wants to share the usage of the public tools, then you have
to wait for him to release the fork and he he has to wait for you to release the knife. If none wants
to yield, no one can proceed to get any turkey. Both of you have to wait forever and this situation
is called deadlock.

Figure 7-6 Resource Sharing (Image downloaded from http://disney-clipart.com/Thanksgiving/)

In this simple example, is there any way to prevent deadlock by setting some rules of using
the tools? Actually, there a simple way to prevent deadlock by ordering the acquiring of tools.

26 Deadlocks

For example, you can set a simple rule of using the tools: if you need to use both the knife and
the fork, you must first hold (have acquired) the knife before you are allowed to pick up the fork.
Under this rule, deadlock will not occur as only one of you can hold the knife at any instance. Of
course, while you are holding the knife, if your little brother has acquired the fork, he is certainly
allowed to use it to get some other food such as mashed potato and beans that do not need a knife
to fetch. After he has finished fetching those food, he has to put the fork back on the table before
he is allowed to get the knife to get any turkey meat and now you can pick it up to fetch the turkey
meat. In computer systems, ordering shared resources and enforcing the rule of acquiring them in
order is a simple way to prevent deadlock. The following two examples demonstrate this method.
In the examples, two threads will acquire two Mutex variables to access a critical section. In the
first example, the two threads do not acquire the Mutex objects in the same order, and deadlock
occurs, while in the second example, they acquire Mutex objects in the same order and the system
is deadlock free.

The following program creates two threads that result in a deadlock state:

Program Listing 7-9 Deadlocked Threads
————————————————————————————————————–

// A demo of the existence of deadlock
package thread.deadlock;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;

public class MainActivity extends Activity
{
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
Mutex mutexX = new Mutex("mutexX");
Mutex mutexY = new Mutex("mutexY");

// Thread A tries to acquire mutexX, then mutexY
Athread A = new Athread(mutexX, mutexY, "A");
// Thread B tries to acquire mutexY, then mutexX
Athread B = new Athread(mutexY, mutexX, "B");

A.start();
B.start();

}
}

class Mutex
{

public String mname;
public Mutex(String name)
{
mname = name;

}
}

class Athread extends Thread
{

Chapter 7 Thread Programming 27

private Mutex first, second;
private String tname;

public Athread(Mutex f, Mutex s, String name) {
first = f;
second = s;
tname = name;

}

public void run() {
synchronized (first) {

// do something
try {

Thread.sleep(((int)(Math.random()+1))*1000);
} catch (InterruptedException e) {}

Log.v ("Thread Info", tname + " thread got " + first.mname);
synchronized (second) {

// do something
Log.v("Thread Info", tname + " thread got " + second.mname);

}
}

}
}

————————————————————————————————————–
In the example, each of the threads tries to acquire both of the mutex objects, mutexX and mutexY
but they try to acquire them in different orders. Consequently, each can only obtain one mutex and
wait for the other one, resulting in a deadlock state. When we run the program, we will see in the
log output the following statements:

Thread Info: A thread got mutexX
Thread Info: B thread got mutexY

This indicates that neither thread has acquired both mutex objects and they have to wait forever.
By modifying the code so that both threads acquire the mutex objects in the same order, we can

ensure that the two threads are deadlock free. The following code listing shows this situation:

Program Listing 7-10 Deadlock-Free Threads
————————————————————————————————————–

// Deadlock free code
package thread.deadlockfree;

public class MainActivity extends Activity
{
@Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
Mutex mutexX = new Mutex("mutexX");
Mutex mutexY = new Mutex("mutexY");

// Both Thread A and try to acquire mutexX, then mutexY
Athread A = new Athread(mutexX, mutexY, "A");
Athread B = new Athread(mutexX, mutexY, "B");

28 Deadlocks

A.start();
B.start();

}
}
// Rest of code same as Listing 7-9

————————————————————————————————————–
When we run the code, we obtain the following log outputs; both threads have acquired both Mutex
objects successfully.

Thread Info: A thread got mutexX
Thread Info: A thread got mutexY
Thread Info: B thread got mutexX
Thread Info: B thread got mutexY

This means that no deadlock has occurred. In developing muti-threaded applications, one has
to be careful to avoid deadlock situations.

Chapter 7 Thread Programming 29

	Chapter 6 Graphics with OpenGL ES 2.X
	6.1 Programmable Pipeline
	6.2 OpenGL Shading Language (GLSL)
	6.2.1 OpenGL Shaders Execution Model
	6.2.2 OpenGL Shading Language API
	6.2.3 Data Types in GLSL

	6.3 Android Graphics with ES 2.0
	6.3.1 Drawing a Triangle
	6.3.2 Shaders in Files
	6.3.3 Animation
	6.3.4 Drawing a Square
	6.3.5 Drawing a Color Square
	6.3.6 Temperature Shaders

	6.4 Drawing 3D Objects
	6.4.1 Introduction
	6.4.2 Drawing a Tetrahedron
	6.4.3 Rotating a Color Tetrahedron

	6.5 Drawing Spheres
	6.5.1 Spherical Coordinates
	6.5.2 Rendering a Wireframe Sphere
	6.5.3 Rendering a Color Solid Sphere
	6.5.4 Lightling a Sphere

