Chapter 8 Network Communication

8.1 Introduction

Devices connected to the Internet use networking protocol TCP/IP to communicate. The protocol
is divided into layers as shown in Figure 8-1 below. At the top of the model is the application layer,
which can be any Internet applications such as creating graphics, streaming videos, and searching
information. At the bottom is the physical layer, which deals with the actual transfer of the data
bits. Below application is the transport layer that controls network traffic and the TCP/IP model
provides the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) for
applications to communicate. The network layer is responsible for the routing of a packet, which
consists of the source and the destination addresses. The data link layer is responsible for handling
errors when transferring the data. In the model, a layer is only allowed to communicate with its
adjacent layers directly. For example, the network layer is only allowed to ‘talk’ to the transport
layer and the data link layer.

Device 1 Device 2
Application Graphics, Games, Web Apps, ... Application
Transport TCP, UDP Transport
Network 1P Network
Data Link Ethernet, FDDI, ISDN Data Link
Physical Cable, EM Wave Physical

T Bit Stream T

Figure 8-1 TCP/IP Layering Model

Normally we program at the application level and do not need to know the details of the low
level layers. Traditionally, people write Internet communication programs in C/C++, calling sev-
eral socket functions to establish a communication channel, which is fairly complicated to pro-
gram. However, Java has largely simplified the coding of such applications. Developing a simple
client-server application may just involve a few lines of codes. We explain a few terms commonly
used in TCP/IP data communication below.

2 Introduction

TCP

TCP (Transmission Control Protocol) is a connection-oriented protocol, where data packets are
transmitted along a fixed established route between the sender and the receiver. It provides a
reliable flow of data between two computers by requiring the receiver to send an acknowledgment
to the sender, after it has received a data packet.

The protocol is at the Transport Layer as shown in Figure 8-1. When two applications commu-
nicate to each other reliably, they first establish a connection route and send data back and forth
over that route. This is analogous to making a telephone call to a friend, in which a connection
is frist established by your dialing a phone number and your friend picking up her phone. Data
are sent back and forth over the connection when both of you speak to one another over the phone
lines. TCP guarantees that data received are in the same order as they were sent.

The Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Telnet are all ex-
amples of applications that are built on top of TCP, which provides a point-to-point reliable com-
munication channel. In many applications, the order in which the data are sent and received over
the network is critical, otherwise the information received will be invalid.

UDP

UDP (User Datagram Protocol) is a connectionless-oriented protocol that transmits independent
blocks of data, called datagrams, from one computer to another with no guarantees about arrival.
No fixed route is established during the transmission. It is possible that different data blocks take
different routes to get to the receiver from the sender. This is in analogous to sending letters
through the postal service, in which the order of delivery is not important and first-come-first-
served is not guaranteed, and each letter is independent of any other. The protocol is also at the
Transport Layer.

For the applications that do not require strict standards of reliability and order of delivery, the
UDP can provide faster service as it does not need the extra overhead to meet the strict require-
ments. For example, a clock server that sends the current time to a client that requests it does
not really need to resend a packet that the client misses as the client can make another request
later. If the client makes two requests and receives the packets out of order, it does not matter
much because the client will find the packets out of order and could make another request. By
neglecting reliability requirements of TCP, the server can improve its performance. Another ex-
ample of a service that does not need reliable communication channel is the ping command, which
is to test the connection between two machines over the network. Actually ping needs to know
about out-of-order or dropped packets to determine how good a connection is. A reliable protocol
would invalidate this service altogether. Also, in a Local Area Network (LAN) the communica-
tion medium is very reliable. Packets rarely lose. So it is desirable to use an unreliable protocol
such as UDP in many LAN applications. On the other hand, the physical communication links in
the Internet are not very reliable as they extend over very large areas. So it makes sense to use a
reliable protocol such as TCP in many Internet applications.

Sockets

When we write Android network applications, we program at the application level, often utilizing
the socket API to send and receive data. A socket is a software endpoint that establishes bidi-
rectional communication between a server program and one or more client programs. The socket
associates the server program with a specific hardware port on the machine where it sends and
receives data. A client socket has to associate with the same port if it wants to communicate with
the server. The socket API was first developed by UC Berkeley in the 1980s for UNIX systems and

Chapter 8 Network Communication 3

is open-source. Later it was adopted by other organizations and platforms. The original Berkeley
sockets are referred to as BSD sockets.a As the API has evolved with little modification from a de
facto standard into part of the POSIX specification, POSIX sockets are basically BSD sockets.

A server program typically provides services or resources to a number of client programs. A
client sends requests to the server, which responds to them. To handle multiple requests from
multiple clients, the server can create one thread dedicated to servicing each client. A multi-
threaded server program can accept a connection from a client, create and start a thread for that
communication, and continue to listen for requests from other clients.

Ports

Physically, a computer connects to a network through a single medium. How can a process (a
running program) communicate with several different processes at the same time? The trick is to
use ports, which are virtualised endpoints. The virtualisation makes multiple concurrent connec-
tions on a single network interface possible. Each process that communicates with another process
identifies itself to the TCP/IP protocol suite by one or more ports. A port is specified by a 16-bit
number. The purpose of specifying ports is to differentiate multiple endpoints on a given network
address. Strictly speaking, an endpoint (socket) is identified by an IP address and a port number.
The TCP and UDP protocols use ports to associate incoming data to a particular process running
on a computer as shown in Figure 8-2 below.

app app app app
port 1 port 2 port 3 port 4
TCP or UDP
f packet

I
L port # data

Figure 8-2 TCP/IP Ports

In the following sections, we will present a few examples to illustrate how Android devices
communicate in a network.

8.2 Connecting to a Server

The first example that we will discuss is about connecting an Android device to a server program
running in a desktop machine and transmitting a message using a socket. Such a server program is
very simple if written in Java. It can be run in any common platform such as Linux, MS Windows,
or Mac OS/X, though we run it in a 64-bit Linux machine. The following is the complete code for

4 Connecting to a Server

this program.

Program Listing 8-1 DemoServer.java

// A simple TCP server for Demo

import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.IOException;
import Jjava.net.ServerSocket;
import java.net.Socket;

public class DemoServer {
public static void main(String[] args) throws IOException {

if (args.length !'= 1) {
System.err.println("Usage: java Server <port number>");
System.exit (1);

int portNumber = Integer.parselnt (args[0]);
try {
ServerSocket serverSocket = new ServerSocket (portNumber) ;
Socket clientSocket = serverSocket.accept();
BufferedReader input = new BufferedReader (
new InputStreamReader (clientSocket.getInputStream()));

String inputLine = null;
while ((inputLine = input.readLine()) != null) {
System.out.println (inputLine);
}
} catch (IOException e) {
System.out.println ("Exception caught on listening on port "
+ portNumber);
System.out.println (e.getMessage());

In the code, the statement
ServerSocket serverSocket = new ServerSocket(portNumber);

creates an endpoint at the specified port number, which is provided by the user as an input argument
to the program. ServerSocket is a java.net class that provides a system-independent implementa-
tion of the server side of a client/server socket connection. If the server successfully binds to the
specified port, the ServerSocket object (serverSocket) is successfully created.

The next statement,

Socket clientSocket = serverSocket.accept();

tells the server process to listen to the port for any request from a client and accepts the connection
if everything has been done properly. If no request has been detected, it just continues to listen.
TCP is used but Java has hidden all the handshaking and house keeping details from the user,

Chapter 8 Network Communication 5

and has simplified the coding of using sockets. When a connection is successfully established,
the accept method returns a new Socket object (clientSocket), which is bound to the same local
port and has its remote address and remote port set to that of the client. The server process can
communicate with the client process over this new clientSocket and continue to listen for client
connection requests on the original serverSocket. However, this simple program can only handle
one client at a time. If we want to handle multiple clients, we need to modify the program.

The subsequent few lines of code simply tell the server read in data from the client and print
them out on the console.

We can compile the program with the command javac DemoServer.java, which generates the
class DemoServer.class. Suppose we choose the port number to be 1989. We can execute the
program using the following command:

$ java DemoServer 1989

The process then waits and listens for requests at port 1989.

To communicate with the server, the client also needs to know the IP address of the server,
which can be found out by executing the command ifconfig in the console of a Linux machine or
ipconfig in MS Windows. The IP of the machine we used in this example is /92.168.1.69.

The Android client program that sends messages to the server is also simple. The following
are the steps of developing this client program in the Eclipse IDE. Suppose we call the project and
application Client.

1. As usual, in Eclipse IDE, create the project and application Client with package name
comm.client.

2. Grant Internet access permissions to the application by adding a couple of uses-permission
tags in the file AndroidManifest.xml like the following:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
<uses-permission android:name="android.permission.INTERNET" >
</uses-permission>

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE">

</uses-permission>

</manifest>

3. Modify the file res/layout/activity_main.xml to the following, which defines the UI layout to
display a button and to accept text input.

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill parent"
android:layout_height="fill_ parent"
android:orientation="vertical" >
<EditText
android:id="@+id/EditText1l"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Hello, Friend." >
</EditText>
<Button
android:id="@+id/myButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

Connecting to a Server

android:onClick="onClick™"
android:text="Send" >
</Button>
</LinearLayout>

4. Modify the program MainActivity.java to the following.

package comm.client;

import android.app.Activity;
import android.os.Build;

import android.os.Bundle;

import android.view.View;

import android.widget.EditText;
import java.io.IOException;

import Jjava.io.PrintWriter;

import java.io.BufferedWriter;
import java.io.OutputStreamWriter;
import Jjava.net.Socket;

import java.net.InetAddress;
import java.net.UnknownHostException;

public class MainActivity extends Activity {
private Socket socket;
private static final int PORT_NO = 1989;
// Need to change IP address to the IP of your server
private static final String SERVER_IP = "192.168.1.69";
@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
new Thread(new ClientThread()) .start();

public void onClick (View view) {

try {
EditText editText = (EditText) findViewById(R.id.EditTextl);
String str = editText.getText ().toString();
PrintWriter out = new PrintWriter (new BufferedWriter(

new OutputStreamWriter (socket.getOutputStream())), true);
out.println(str);
} catch (UnknownHostException e) {
e.printStackTrace () ;
} catch (IOException e) {
e.printStackTrace () ;
} catch (Exception e) {
e.printStackTrace () ;

// inner class
class ClientThread implements Runnable {
@Override
public void run() {
try {

Chapter 8 Network Communication 7

InetAddress serverAddr=InetAddress.getByName (SERVER_IP) ;
socket = new Socket (serverAddr, PORT_NO);

} catch (UnknownHostException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}

}

} //class MainActivity

In the code, the port number and the IP address of the server are hard-coded. The main class
MainActivity defines a Socket class variable called socker as a data member:

private Socket socket;
The actual creation of a Socket object to communicate with the server is done by the thread
ClientThread. The onCreate() method of MainActivity creates and starts this thread by the
statement:

new Thread(new ClientThread()).start();
The thread class ClientThread is implemented as an inner class of MainActivity. Inner
classes have full access to the class in which they are nested, and in our case, the inner class
ClientThread can access all the data members, socket, PORT_NO, and SERVER_IP defined
in MainActivity. It creates the communication channel to the server with the statements:

InetAddress serverAddr=InetAddress.getByName(SERVER_IP);

socket = new Socket(serverAddr, PORT_NO);
The method onClick() of MainActivity defines an editable text field and a button. When the
button is clicked, the text in the text field is sent to the server through the communication
channel, which is achieved by the statements:

EditText editText = (EditText) findViewBylId(R.id.EditText1);

String str = editText.getText().toString();

PrintWriter out = new PrintWriter(new BufferedWriter(

new OutputStreamWriter(socket.getOutputStream())), true);

out.println(str);
When we run the program, the Android UI shows a Send button and an editable text field as
shown in Figure 8-3 below.

i 5554:avd4.4

e

Y a 8:09

'i;TIZHent

Hello, Friend.

Send

Figure 8-3 Client UI

We can type in any text message in the text area. Upon clicking the Send button, the message
is sent to the server, which then reads in the text and prints it to the console. The following

8 Communication Between Android Devices

shows the operation on the server side and sample text received from the Android client.

$ java DemoServer 1989
Hello, Friend.
Android the Beautiful!

8.3 Communication Between Android Devices

We have discussed how to send a message from an Android device to a server running on a PC
in the previous section. Suppose now we want to send messages from an Android client to an
Android server and we want to do the test in AVD emulators. In this case, the client program is
the same as the one presented above except that the hard-coded IP address needs to be changed to
the one that an AVD emulator runs, which is 10.0.2.2. That is, in the program MainActivity.java
of the Client project discussed above, we need to modify the statement specifying the IP address
to:

private static final String SERVER_IP = "10.0.2.2";

We will still use the port number 1989 for the client.

The Android server program is different from the server program running on a PC as it is run as
an Android application. Suppose we develop this program in the Eclipse IDE and name the project
and application Server and the package comm.server. Like what we did to the Client application
described above, we have to grant Internet access permission to the Server application; this is
done by adding <uses-permission> statements in the file AndroidManifest.xml (see the Client
project description in the previous section). The listing below shows the complete Java code of
MainActivity.java of the server program.

Program Listing 8-2 MainActivity.java of Server

package comm.server;

import android.os.Build;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;
import android.widget.TextView;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import Jjava.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;

public class MainActivity extends Activity {

private ServerSocket serverSocket;

private String str;

Handler textHandler;

Thread serverThread = null;

private TextView textView;

public static final int portNumber = 2014;

@Override
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

Chapter 8§ Network Communication 9

setContentView (R.layout.activity_main);

textView = (TextView) findViewById(R.id.textl);
textHandler = new Handler ();
new Thread (new ServerThread()) .start();

}

@Override

protected void onStop () {
super.onStop () ;
try {
serverSocket.close () ;
} catch (IOException e) {
e.printStackTrace();

//Inner class
class ServerThread implements Runnable {

public void run() {
Socket commSocket = null;
try {
serverSocket = new ServerSocket (portNumber) ;

} catch (IOException e) {
e.printStackTrace();
}
while (!Thread.currentThread() .isInterrupted()) {
try {
commSocket = serverSocket.accept();
BufferedReader input = new BufferedReader (
new InputStreamReader (commSocket.getInputStream()));
while ((str = input.readLine()) = null)
textHandler.post (new ShowText ());
} catch (IOException e) {
e.printStackTrace () ;

}
} //ServerThread

// Inner class
class ShowText implements Runnable {

@Override
public void run() {
textView.setText (textView.getText () .toString () +
"Client said: " + str + "\n");

}
} //ShowText
} //MainActivity

In the code, the server port number is hard-coded to be 2014. We created a Handler object, which
is referred to by the variable textHandler, to process any incoming message. A Handler allows us
to send and process Message and Runnable objects associated with the MessageQueue of a thread.
Normally, the main thread of a process is dedicated to running a message queue that manages

10 Communication Between Android Devices

the top-level application objects such as activities, and broadcast receivers, and any windows they
create. The application can create other threads, and communicate back with the main thread
through a Handler. A newly created Handler is bound to the thread/message queue of the creating
thread, delivering messages and runnables to the message queue and executing them as they come
out of the message queue. Its method post() takes a thread as an argument and adds the thread to
the message queue. In our code, ShowText is an inner class that displays text on the defined text
area, and an object of it is passed as an argument to post().

ServerThread is another inner class that creates a socket with the specified port number, listen-
ing to incoming messages. When it reads a line, it uses textHandler to pass the information to the
main thread. The statement

textHandler.post (new ShowText ());

creates a ShowText thread and adds it to the message queue. This thread then displays the message
on the screen while ServerThread continues to listen to other messages.

To test the application, we first use Eclipse to run with one AVD the Server program, which
uses port 2014. The client program will use port 1989. The AVD emulator running the server
would use port 5554. We want to access this emulator and redirect client messages to its port. This
can be done using telnet and its redir command. So the next step is to issue the telnet command
in the machine that runs the AVD emulator like the following:

$ telnet localhost 5554

Trying ::1...

telnet: connect to address ::1: Connection refused
Trying 127.0.0.1...

Connected to localhost.

Escape character is "7]’.

Android Console: type ’"help’ for a list of commands
OK

redir add tcp:1989:2014

OK

The command redir add tcp:1989:2014 redirects messages from port 1989 to port 2014. Also
an AVD emulator runs on the alias I[P 10.0.2.2.

Lastly, we run the client program using another AVD emulator (different from the one used to
run the server program). When these are done, we see two emulators running on our PC, one for
Client and one for Sever. When we enter text in the client and click the button, the text is sent to the
server for display. Figure 8-3 below shows two emulators that run the client and server programs.

5556:intel-4.4 5554:avd4.4
A b 1:03

- C -
1@ Client & Server

1 h ,,| Client said: Hello, Friend.
: Who are you? , [Client said: Who are you?

Send

Figure 8-3 Running Client and Server with Two Emulators

Chapter 8 Network Communication 11

8.4 A Remote Calculator

In the example of this section, we present a simple remote calculator, which works like a typical
client-server application. The client is an Android program, managing the Ul and interacting
with the user. The server is a Java program running in a PC, performing the actual arithmetic
calculations. The client accepts inputs from the user and sends them to the remote server, which
carries out the calculations and returns the result to the client. Obviously, there are many ways to
write such an application.

To introduce more programming techniques, we define a client thread using an independent
external class instead of using an inner class like what we did did before.

8.4.1 JSON

We also introduce here the usage of JSON, which stands for JavaScript Object Notation, to pass
data between the client and the server. JSON is a lightweight data-interchange format, easy for hu-
mans to read and write, and easy for machines to parse and generate. It is a languate independent
text format based on a subset of the JavaScript Programming Language, Standard ECMA-262 3rd
Edition deployed in 1989, using conventions that are familiar to programmers of common lan-
guages such as C/C++, Java and Python. JSON is open-source, making it an ideal data-interchange
language. It is built on two structures:

1. A collection of name/value pairs, which can be realized as an object, record, struct, dictio-
nary, hash table, keyed list, or associative array.
2. An ordered list of values, which can be realized as an array, vector, list, or sequence.

As these are universal data structures, supported by virtually all modern programming languages,
it makes sense to have a data format, which is interchangeable with programming languages, to be
based on these structures.

In JASON, they take on one of the forms: object, array, value, and string. For details, please
refer to its official web site at:

http://www,json.org/

In our application, we will only use the object form. An object is an unordered set of name/value
pairs, starting with { (left brace) and ends with } (right brace). Each name is followed by : (colon)
and the name/value pairs are separated by , (comma) as shown in Figure 8-4 below.

Figure 8-4 Object Form of JSON

We will use this form to pass data structures between the client and the server. For example, we
can express the calculation of the sum of two numbers, 2 + 1, by the text,

{éécalcop” : LL_’_”’ “Opl” . “2”7 “Op277 : 44177}

where the string calcOp indicates the calculation operator; the string op1 indicates the first operand,
and op2, the second operand. The JSON package that we have used, json-simple-1.1.1.jar, is a
simple version, which was downloaded from the site,

http://code.google.com/p/json-simple/

12 Server Running on PC

8.4.2 Server Running on PC

The application’s server, which runs on a PC, carries out the calculations. The code of reading in
a message from a socket is similar to the server code DemoServer.java presented in Listing 8-1
of Section 8.2. However, here the code has to parse the input line to a JSON object, extract the
operator and the operands, perform the calculation and send the result back to the client. Suppose
we call our server program CalcServer.java, and we assume that we will use port 1989 to commu-
nicate. The following lists the complete server code:

Program Listing 8-3 CalcServerjava

// Remote Calculator Server running on PC
import java.io.x;

import java.net.x;

import java.util.Arrays;

import org.json.simple.x*;

import static java.lang.System.in;

public class CalcServer
{
public static void main(String[] args) throws IOException
{
if (args.length !'= 1) {
System.err.println("Usage: java CalcServer <port number>");
System.exit (1) ;
}

int portNumber = Integer.parselnt (args[0]);
JSONObject jsonObiject;
try {
ServerSocket serverSocket = new ServerSocket (portNumber);
while (true) {
System.out.println("Waiting for Client!");
Socket socket = serverSocket.accept();

String inputLine = null;
// get input from socket
BufferedReader input = new BufferedReader (
new InputStreamReader (socket.getInputStream()));
double result = 0.0;

while ((inputLine = input.readLine()) '= null) {
System.out.print (" Received request: ");
System.out.println (inputLine);
jsonObject = (JSONObject) JSONValue.parse (inputLine);
result = calculate (jsonObiject);
PrintWriter ow=new PrintWriter (socket.getOutputStream(),true);
ow.println (result);
System.out.println(" Result sent to client!");

}
socket.close();
} // while (true)
} catch (IOException e) {
System.out.println ("Exception caught on listening on port
+ portNumber);
System.out.println(e.getMessage());

Chapter 8 Network Communication 13

System.exit (1);

public static double calculate (JSONObject JjsonObject)
{
double result = 0;
// Extract operator and operands.
String calcOp = (String) jsonObject.get ("calcOp");
double opl=Double.parseDouble ((String) jsonObject.get ("opl"));
double op2=Double.parseDouble ((String) jsonObject.get ("op2"));

// Do the actual calculation
if (calcOp.equals("+"))
result = opl + op2;

else if (calcOp.equals("-"))
result = opl - op2;
else if (calcOp.equals("«"))

result = opl * op2;
else if (calcOp.equals("/"))

if (op2 !'= 0)
result = opl / op2;
System.out.printf(" %f %s %f = %f : ",opl,calcOp,op2,result);

return result;

In the code, the main method creates a ServerSocket object with the specified port and listens to
the port by creating a Socket object and using its accept() method to accept any incoming message
as a string, and form a JSON object from the string by the statement,

jsonObject = (JSONObject) JSONValue.parse (inputLine);

It then calls the method calculate(), which takes a JSON object as the input parameter, to do the
calculation. The calculate method parses the JSON object using the get() method of the JSSON
simple package to extract the operator and the two operands. It then does the arithmetic calculation
and returns the result as a double to main, which sends the result to the client through the socket
by the two statements:
PrintWriter ow = new PrintWriter (socket.getOutputStream(), true);
ow.println (result);
After the result has been sent, it closes the current Socket object using the statement
socket.close();
and goes back to the beginning of the while-loop to create another socket for listening and accept-
ing another message.
Suppose we put the simple JSON package json-simple-1.1.1 in the same directory as the server
program, CalcServerjava. We can compile the server program in a PC with the following com-
mand,

$ javac -cp .:./json-simple-1.1.1.jar CalcServer. java
and run it with the command,

$ java -cp .:./json-simple-1.1.1.jar CalcServer 1989

14 Client Running on Android

where the input parameter 1989 is the port number that will be used by the server. The running
program will respond with the message:

Waiting for Client!

while waiting for any request from a client.

8.4.3 Client Running on Android

The application’s client program runs on Android. Suppose we call the project CalcClient and the
package comm.calcclient. We divide the application into two classes. The main class MainActivity
is for UI, accepting inputs and displaying results. The other class, named Client is for communi-
cating with the server, sending the operation strings to and accepting results from the server. The
following lists the code of the class MainActivity, omitting the import and package statements.

Program Listing 8-4 MainActivity.java of CalcClient Project

public class MainActivity extends Activity
implements View.OnClickListener

public static double result = 0;
public static String oper = "";
public static String numsl;
public static String nums2;

private String str = "";

private int displayCount = 0;

EditText tl, t2;

ImageButton plusButton, minusButton, multiplyButton, didvideButton;
TextView displayResult;

/+* Called when the activity is first created. =/

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);

// find elements defined in res/layout/activity_main.xml

tl = (EditText) findViewById(R.id.tl);

t2 = (EditText) findViewById(R.id.t2);

plusButton = (ImageButton) findViewById(R.id.plusButton);
minusButton = (ImageButton) findViewById(R.id.minusButton);
multiplyButton = (ImageButton) findViewById(R.id.multiplyButton);
didvideButton = (ImageButton) findViewById(R.id.divideButton) ;
displayResult = (TextView) findViewById(R.id.displayResult) ;

// set listeners
plusButton.setOnClickListener (this);
minusButton.setOnClickListener (this);
multiplyButton.setOnClickListener (this);
didvideButton.setOnClickListener (this);

// @QOverride

Chapter 8 Network Communication 15

public void onClick (View view) {
// check if the fields are empty
if (TextUtils.isEmpty (tl.getText ().toString())
|| TextUtils.isEmpty(t2.getText () .toString()))
return;

// read numbers from EditText
numsl = tl.getText ().toString();
nums2 = t2.getText () .toString();

// determine which image button has been clicked
switch (view.getId()) {
case R.id.plusButton:

oper = "+";
break;

case R.id.minusButton:
oper = "-";
break;

case R.id.multiplyButton:
oper = "x";
break;

case R.id.divideButton:
oper = "/";
break;

default:
break;

}
// Create thread to send request
Client client = new Client (numsl, nums2, oper);
Thread sendThread = new Thread (client);
sendThread.start () ;
try {
result = client.getResult();
} catch (InterruptedException e) {
e.printStackTrace () ;
}
// form the output line, display at most 4 lines on screen
if (displayCount < 4) {

str += numsl + " " + oper + " " + nums2 + " = " + result + "\n";
displayCount++;
} else {
displayCount = 1;
str = numsl + " " + oper + " " + nums2 + " = " + result + "\n";

}
displayResult.setText (str);

The UI part of the code is straight forward and easy to understand. The UI is defined in the
layout file of res/layout/activity_main.xml, which is not presented here as it is similar to some of
the layout files we have explained in previous chapters. (The complete code of this book can
be downloaded from the site hppt://www.forejune.com.) In the Ul, the user enters two numbers
in the two EditText fields. Upon clicking an image button, the method onClick() is called; the
method reads in the two numbers and chooses the corresponding operator of the image button. It

16 Client Running on Android

then creates a Client thread to send the operation string to the server, which returns the result of
operation to the Client object. The onClick method calls the getResult() method of Client to get
the operation result. It then displays the operation string and the result on the screen using the
setText() method of TextView. (See Figure 8-5 below.)

The code of the Client class is fairly simple and is presented in Listing 8-5 below. Its method
remoteCalculation() is responsible for sending the operation string in the JSON object form to
the server, which returns the result of operation; the method saves the result in the double variable
result.

The only task of the method getResult() is supposed to return the value of result as a double
to whatever calls it. However, we cannot simply return result without checking the situation. This
is because the method may be called before the result is available. That is, it is called before
remoteCaculation has obtained the result from the server, and thus returning an invalid value. To
prevent this from happening, we can use the guard concept we discussed in Chapter 7 to force the
method to wait until the result is available. We define a Condition variable, resultReady, to enforce
the waiting with the statement

resultReady.await();

It suspends the execution of the method until resultReady.signal() is executed by the method
remoteCalculation or some other routines, after the result has been obtained from the server.
Consequently, getResult always returns a valid result. However, we need to address one more
issue — there could be situations that the signal() command is executed before await(), leaving it
waiting forever. To guard against this situation, we define an integer variable, count. The method
waits only if the value of count is 0, which is incremented by remoteCalculation when the result
is available. This is illustrated in Figure 8-5 below:

int count = 0;

double getResult() void remoteCalculation()

{ {

while (count==0) | |

resultReady.await(); count++;
count = 0; resultReady.signal();
return result; }

}

Figure 8-5 Enforcing Valid Result with Condition Variable

In our actual code, the count increment and the execution of signal are done in the run() method.
The complete code of the Client class is listed below with import and package statements omitted.

Program Listing 8-5 Client.java of CalcClient Project

public class Client implements Runnable {
private static Socket socket;
private static String numsl;
private static String nums2;
private static String calcOp;
private static double result = 0;
final Lock mutex = new ReentrantLock();
final Condition resultReady = mutex.newCondition();
private int count = 0;

Chapter 8§ Network Communication

public Client (String nl, String n2, String op)
{
numsl = nl;
nums2 = n2;
calcOp = op;
}
@Override
public void run() {
// TODO Auto—-generated method stub

String serverAddr = "192.168.1.69";
int portNumber = 1989;

mutex.lock () ;
try {
//socket = initiateContact (serverAddr, portNumber);

remoteCalculation(serverAddr, portNumber);
count++;
resultReady.signal () ;
} catch (UnknownHostException el) {
el.printStackTrace();
} catch (IOException el) {
el.printStackTrace();
} finally{
mutex.unlock () ;

public void remoteCalculation(String serverAddr, int portNumbe)
throws IOException
{
Socket socket = null;
socket = new Socket (serverAddr, portNumber) ;

BufferedReader stdIn = new BufferedReader (new
InputStreamReader (System.in));
// Form JSON object string
String jsonString = "{" + "\"calcOp\":\""
+ CalCOp + "\",ll + "\"Opl\":\""
+ numsl + 'l\"," + "\"Opz\":\""
+ nums2 + "\"}";

System.out.println(jsonString);
sendMessage (socket, jsonString);

String serverReply = receiveMessage (socket);
System.out.println("Result: " + serverReply);
result = Double.parseDouble ((String) serverReply);

stdIn.close () ;
socket.close();

public double getResult () throws InterruptedException
{

mutex.lock () ;

17

18 Client Running on Android

System.out.println ("getResult wait");
// The count is to ensure the function won’t wait forever

// if signal has been issued before await.
while (count ==)

resultReady.await () ; // Condition wait
count = 0;

mutex.unlock () ;

return result;

// Receive message from a socket
public static String receiveMessage (Socket socket)
throws IOException {
String inputLine = null;
BufferedReader inputBuffer = null;
inputBuffer = new BufferedReader (new InputStreamReader
(socket.getInputStream()));
inputlLine = inputBuffer.readLine();

return inputLine;

// send message to socket
public static void sendMessage (Socket socket, String outputLine)
throws IOException {
PrintWriter outputWriter = null;
outputWriter = new PrintWriter (socket.getOutputStream(), true);
outputWriter.println (outputLine);

When we run the code in Android, we will see an Ul like the one shown in Figure 8-6. The text
below the image buttons are the calculation expressions we have entered and the results returned
by the server.

Also, correspondingly, the server will print out some messages. While the client is running in
Android, the server running in a PC will display output messages similar to the following, which
tells the user it receives requests from the client, does the calculations, and returns the results.

Waiting for Client!
Received request: {"calcOp":"+","opl":"1989","op2":"64"}

1989.000000 + 64.000000 = 2053.000000 = Result sent to client!
Waiting for Client!

Received request: {"calcOp":"-","opl":"1989","op2":"64"}

1989.000000 - 64.000000 = 1925.000000 = Result sent to client!

Waiting for Client!
Received request: {"calcOp":"x","opl":"1989","op2":"64"}
1989.000000 = 64.000000 = 127296.000000 - Result sent to client!
Waiting for Client!
Received request: {"calcOp":"/","opl":"1989","op2":"64"}
1989.000000 / 64.000000 = 31.078125 : Result sent to client!
Waiting for Client!

Chapter 8§ Network Communication 19

@ 5554:avd4.4

I®! CalcClient

1989 64
1989 + 64 = 2053.0
1989 - 64 = 1925.0

1989 * 64 = 127296.0
1989 /64 =31.078125

Figure 8-6 Sample I/O Display of Client Calculator

8.5 Broadcast Receiver

A broadcast receiver (or receiver for short) is an Android component for detecting system or appli-
cation events, responding to system-wide broadcast announcements, such as low battery level or
file downloading done. A broadcast receiver is implemented as a subclass of BroadcastReceiver
and each broadcast is delivered as an Intent object. BroadcastReceivers are one of Androids four
standard app component types (activities, services, content providers, and broadcast receivers),
each of which serves a distinct purpose and has a distinct life cycle that defines how the compo-
nent is created and destroyed. Details of the BroadcastReceiver class can be found at
http://developer.android.com/reference/android/content/BroadcastReceiver. html

A broadcast receiver must first be registered before it will receive any announcement. All
registered receivers for an event are notified by the Android runtime once the event occurs. For
example, an application can register for the ACTION_BOOT_COMPLETED system event, which
occurs when the Android system has completed the boot process.

We can register a receiver statically via the AndroidManifest.xml file or dynamically via the
Context.registerReceiver() method.

Implementation of a broadcast receiver consists of two steps:

1. declaring a subclass of BroadcastReceiver, and
2. implementing the onReceive() method.

The following sample code shows the form of the implementation:

20

import
import
import

Broadcast Receiver

android.content.Context;
android.content.Intent;
android.content.BroadcastReceiver;

public
{

@Override

public void onReceive (Context context,

// Response to an event

}
}

class MyReceiver extends BroadcastReceiver

Intent intent) {

The Android runtime calls the onReceive() method on all registered receivers whenever the event

occurs. This method takes two parameters:

Parameter
context

The Context object on which the receiver is running. We can use it

to access additional information or to start services or activities.

intent

The Intent object being received. It contains additional information

that we can use in our implementation.

System-wide Events

A lot of system events are defined as final static fields of the Intent class. Furthermore through-
out the API there are many more classes that offer specific broadcast events themselves. Some
examples are BluetoothDevice or TextToSpeech.Engine and nearly all the Manager classes like
UsbManager or AudioManager. Android really offers plenty of events that we can make use of in

our apps.

The following list is only a small sample of all available events.

Table 8-1 System-Wide Events Samples

Event

Broadcast Action

Intent. ACTION_BATTERY _LOW

The battery level is low.

Intent. ACTION_BATTERY _OKAY

The battery level is good again.

Intent. ACTION_BOOT_COMPLETED

System has finished booting. Requires android.
permission.RECEIVE_BOOT_COMPLETED.

Intent. ACTION_DEVICE_STORAGE_LOW

Storage space on the device is low.

Intent. ACTION_DEVICE_STORAGE_OK

Storage space on the device is good again.

Intent. ACTION_HEADSET_PLUG

A headset has been plugged in or removed.

Intent. ACTION_INPUT_METHOD_CHANGED

An input method has been changed.

Intent. ACTION_LOCALE_CHANGED

The language of the device has been changed.

Intent. ACTION_MY _PACKAGE_REPLACED

The app has been updated.

Intent. ACTION_PACKAGE_ADDED

A new app has been added to the system.

Intent. ACTION_POWER_CONNECTED

Has connected to external power.

Intent. ACTION_POWER_DISCONNECTED

The device has been upplugged from power.

KeyChain. ACTION_STORAGE_CHANGED

The keystore has been changed.

BluetoothDevice. ACTION_ACL_CONNECTED

Has established a Bluetooth ACL connection.

AudioManager.
ACTION_AUDIO_BECOMING_NOISY

The internal audio speaker will be used, not
other output means like a headset.

Chapter 8 Network Communication 21

Registration in Manifest File

We can statically register and configure a broadcast receiver in the manifest file, AndroidMani-
Sfest.xml using the <receiver> element and we can specify what event the receiver should react to
using the nested element <intent-filter>.

Registration in Java Program

Alternatively, we can register a BroadcastReceiver object dynamically in our Java program by
calling the registerReceiver() method on the corresponding Context object.

The following sample code shows the form of the implementation, using the system event
ConnectivityManager CONNECTIVITY _ACTION, which responds to a change in network con-
nectivity, as an example:

import android.content.BroadcastReceiver;
import android.content.IntentFilter;
import android.net.ConnectivityManager;

public class MainActivity extends Activity
{

BroadcastReceiver receiver;

IntentFilter intentFilter;

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
receiver = new MyReceiver () ;
intentFilter =
new IntentFilter (ConnectivityManager.CONNECTIVITY_ ACTION) ;

}

@Override

protected void onPause () {
unregisterReceiver (receiver);
super.onPause () ;

@Override

protected void onResume () {
registerReceiver (receiver, intentFilter);
super.onResume () ;

The method registerReceiver() takes two parameters:

Parameter
receiver The BroadcastRegister we want to register.
intentFilter The IntentFilter object specifying the event that the
receiver should listen to.

If in our example we just simply print a message to the Log in response to a network change, our
receiver would like like the following:

22 Using a Broadcast Receiver

public class MyReceiver extends BroadcastReceiver
{
@Override
public void onReceive (Context context, Intent intent) {
Log.v ("MyReceiver", "Network connectivity changed!");

8.6 Fetch Data From a Web Site

We have discussed services and the usage of services for process communications in Chapter 3. In
this section, we present an example that demonstrates the usage of a service to fetch data from the
Internet. We call the project and application FetchData and the package comm.fetchdata.

An Activity of the application displays a button for the user to click on to download a file from
a Web site. When it is done, the Service notifies the Activity through a broadcast receiver. Upon
receiving the notification, the receiver flashes a Toast message on the screen.

In the example, the file name and the URL of the Web site are hard-coded. The data down-
loaded are saved in an external storage using a method discussed in Chapter 5. After we have used
the Eclipse IDE to create the project and default files, we need to modify the manifest file Android-
Manifest.xml, the layout file res/layout/activity_main.xml and the main Java program MainActiv-
ity.java. In addition, we will create two class files, FetchData.java, which is an Activity responsible
for downloading and saving the data in the background, and DataReceiver.java, which is a receiver
that flashes a finishing message on the screen using the Toast class.

8.6.1 Using a Broadcast Receiver

We will use a broadcast receiver as we have explained in Section 8.5 to communicate with the
main activity. The MainActivity creates a broadcast receiver, DataReceiver and dynamically regis-
ter it for the event of finishing download. The service FetchData generates a signal when the event
occurs, and broadcast the signal to all the registered receivers using the method sendBroadcast().
The following figure shows this communication scheme.

sendBroadcast()
Service =~ Android Runtime

onReceive()

Broadcast Receiver
Registered in
Activity

Figure 8-7 Communication Using Broadcast Receiver

The listing below shows the implementation of DataReceiver of the project.

Chapter 8 Network Communication 23

Program Listing 8-6 DataReceiverjava of FetchData Project

package comm.fetchdata;

import android.app.Activity;
import android.content.x;
import android.os.Bundle;
import android.widget.Toast;

public class DataReceiver extends BroadcastReceiver
{
@Override
public void onReceive (Context context, Intent intent) {
Bundle bundle = intent.getExtras();
if (bundle != null) {
String string = bundle.getString (FetchData.FPATH);
int resultCode = bundle.getInt (FetchData.RESULT) ;
if (resultCode == Activity.RESULT_OK) {
Toast .makeText (context, "Fetch complete. Store URI: "
+ string, Toast.LENGTH_LONG) .show () ;
} else {
Toast .makeText (context, "Fetch failed",
Toast .LENGTH_LONG) .show () ;

The method onReceive(Context, Intent) of this class is invoked when FetchData calls send-
Broadcast(Intent). FetchData also creates an Intent to pass data to DataReciever through the
Intent parameter of sendBroadcast to onReceive, which extracts the data using the method ge-
tExtras() of the Bundle class. The other parameter, Context of onReceive is the Context of the
class (MainActivity in this example) that registers DataReceiver. Through this Context parameter,
the receiver can exchange data with MainActivity.

8.6.2 Connecting to and Accessing a URL

In this example, the FetchData project, we make use of Java’s URL class of the java.net package
to connect the Android device to an Internet site. In general, URL is the acronym for Uniform
Resource Locator, an address that references a resource on the Internet. We provide URLs to a
Web browser to locate files on the Internet. The term URL may be ambiguous. It may refer to
an Internet address or a URL object in a Java program. To avoid this ambiguity, we follow the
convention used by the Java official site. When the meaning of URL needs to be specific, we use
“URL address” to refer to an Internet address and “URL object” to an instance of the URL class
in a program. Moreover, if we use italics, a URL is referring to a URL object or URL class.

Creating a URL

A URL object can be created with a URL constructor, which may take one argument as a string
that specifies a URL address. Or it may take two arguments, one of which is a URL object referring
to the base URL address of a web site; the other is a string specifying an address relative to the
base address. The general forms of the constructors are:

24 Connecting to and Accessing a URL

1. URL (String url_address);
2. URL (URL baseURL, String relative_url);

The following are some examples:
1. URL myURL = new URL (“http://www.forejune.com/index.html”);

2. ULR baseURL = new URL (“http://www.forejune.com/”);
URL urll = new URL (baseURL, ”index1.html”);
URL url2 = new URL (baseURL, ”index2.html”);

The class URL provides a few methods to parse a URL. For example, methods getHost(),
getPort(), and getPath() return the hostname, the port number, and the path components of the
URL respectively.

Connecting to and Accessing a URL

We can connect to a URL by first using method openConnection() of the class URL to open and
start a connection. The method returns an object of the class URLConnection, which has several
method for establishing and initializing a communication link between our Java program and the
URL address over the network. We will use the method connect() of the class URLConnection
to establish a connection. If the connection is established successfully, we can treat it as a data
stream and use one of the many Java I/O streaming methods to process the data of the remote Web
site. The following simple code is a typical example of establishing a link to and reading data from
a URL address; actually, it is a complete Java program that saves the downloaded data in the file
downloaded.txt.

// ReadURL.java: Compile: javac ReadURL. java
// Execute: Jjava ReadURL

import Jjava.io.x;

import java.net.URL;

public class ReadURL ({

public static void main (String args([])
{
String urlAddress = "http://www.forejune.com/";
InputStream is = null;
FileOutputStream fos = null;
try {
URL url = new URL(urlAddress);
is = url.openConnection() .getInputStream();

InputStreamReader isr = new InputStreamReader (is);
fos = new FileOutputStream("downdloaded.txt");
int next = -1;
while ((next = isr.read()) != -1)
fos.write (next);
} catch (Exception e) {
e.printStackTrace();

}

}

The class file FetchData.java of our FetchData project uses the same technique to connect to a
hard-coded URL, and read the data, saving them in an external storage with a specified filename.

Chapter 8§ Network Communication 25

Program Listing 8-7 below shows the code of FetchData.java.

Program Listing 8-7 FetchData.java of FetchData Project

package comm.fetchdata;

import java.io.x;

import java.net.URL;

import android.os.x*;

import android.net.Uri;

import android.util.Log;

import android.widget.Toast;
import android.app.Activity;
import android.content.Intent;
import android.app.IntentService;

public class FetchData extends IntentService

{

private int result = Activity.RESULT_CANCELED;

public static String URL_ADDRESS = "http://www.forejune.com";
public static String FNAME = "downloaded.html";

public static String FPATH = "./";

public static String RESULT = "result";

public static String NOTIFICATION = "comm.fetchdata.receiver";

public FetchData() {

super ("FetchData") ;

// will be called asynchronously by Android
@Override
protected void onHandlelIntent (Intent intent) {

String urlUsed = intent.getStringExtra(URL_ADDRESS);
String fileName = intent.getStringExtra (FNAME) ;

File output = new File(Environment.getExternalStorageDirectory(),
fileName) ;
if (output.exists()) {
output.delete();

InputStream is = null;
FileOutputStream fos = null;

Toast .makeText (FetchData.this, "Testing FetchData",

Toast .LENGTH_LONG) .show () ;

try {

URL url = new URL (urlUsed);

is = url.openConnection () .getInputStream();
InputStreamReader isr = new InputStreamReader(is);
fos = new FileOutputStream(output.getPath());

int next = -1;

while ((next = isr.read()) != -1)

fos.write (next);
result = Activity.RESULT_OK;

26 Connecting to and Accessing a URL

} catch (Exception e) {
e.printStackTrace () ;
} finally {
if (is !'= null) {
try {
is.close();
} catch (IOException e) {
e.printStackTrace();

}
if (fos != null) {
try {
fos.close () ;
} catch (IOException e) {
e.printStackTrace();

}
notifying (output.getAbsolutePath (), result);

private void notifying(String outputPath, int result) {
Intent intent = new Intent (NOTIFICATION) ;
intent.putExtra (FPATH, outputPath);
intent.putExtra (RESULT, result);
sendBroadcast (intent) ;

This class, FetchData, extends IntentService so that it can receive data from or send data to the
main class that starts it. IntentService is a base class for Service objects that handle asynchronous
requests, which are expressed as Infents, on demand. Typically, clients send requests with start-
Service(Intent) calls to start the service when needed. The method handles each Intent object
in turn using a worker thread, and stops itself when it runs out of work. These usually work in
the background. When the work is done, it signals the DataReceiver using the sendBroadcast()
method, which is called inside the notifying() method of FetchData, where another Intent object
is created to pass some relevant information to the receiver, DataReceiver.

In the code, the String variables URL_ADDRESS, and FNAME are initialized when they are
declared as data members in the class FetchData. However, their values are not used and the actual
values are supplied by the main class, MainActivity in the onHandleIntent() method through the
statements,

String urlUsed = intent.getStringExtra(URL_ADDRESS);
String fileName = intent.getStringExtra (FNAME);

To supply the values, the MainActivity class should have corresponding statements of putStringEx-
tra() like the following:

intent.putExtra(FetchData.FNAME, "downloaded.txt");
intent.putExtra(FetchData.URL_ADDRESS,
"http://www.forejune.com/index.html") ;

Chapter 8 Network Communication 27

The class FetchData implements the onHandleIntent (/ntent) method of IntentService. The
method is invoked on the worker thread with a request to process. Only one Infent object is pro-
cessed at one time, but each worker thread runs independently, not relying on other requests. When
all requests have been handled, the IntentService stops itself. The parameter of onHandleIntent()
is the Intent object passed to the method startService(Intent), which is a method of the class Con-
text, and is used for starting services. In our example, this method is called in method onClick() of
the MainActivity class, and the Intent parameter is a FetchData object. In other words, FetchData
will work in the background to fetch data from a URL address and save the data in an external
storage.

8.6.3 Ul Handled by MainActivity

In this project, MainActivity handles the Ul and let FetchData do the downloading and storing.
It also creates a DataReceiver object and registers it as we have discussed before. It starts the
FetcData activity in background by calling the method startService(Infent) and passes data to
FetchData through the Intent parameter. The following lists the complete code of this class:

Program Listing 8-8 MainActivity.java of FetchData Project

package comm.fetchdata;

import android.app.x*;
import android.os.x*;
import android.view.x;
import android.widget.x;
import android.content.x;

public class MainActivity extends Activity
{
public TextView textView;
DataReceiver receiver;
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);

receiver = new DataReceiver ();

textView = (TextView) findViewById(R.id.status);
}
@Override
protected void onResume () {

super.onResume () ;
registerReceiver (receiver,new IntentFilter (FetchData.NOTIFICATION)) ;

@Override

protected void onPause () {
super.onPause () ;
unregisterReceiver (receiver);

public void onClick (View view) {
Intent intent = new Intent (this, FetchData.class);

28 Ul Handled by MainActivity

// add info for the service of fetching file

intent.putExtra (FetchData.FNAME, "downloaded.txt");

intent.putExtra (FetchData.URL_ADDRESS,
"http://www.forejune.com/index.html") ;

// Start FetchData to run as background

startService (intent);

textView.setText ("Service started");

After we have written these three Java programs, MainActivity.java, FetchData.java and DataRe-
ceiverjava, we have to modify the manifest file, AndroidManifest.xml to grant access permissions
to the Internet and the external storage to the application. We also need to declare the FetchData
service in the file as shown in the Listing below.

Listing 8-9 AndroidManifest.xml of FetchData Project

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<application

</activity>
<service android:name="comm.fetchdata.FetchData" >
</service>
</application>
</manifest>

To incorporate the UI features of our project, we also need to modify the layout file, activ-
ity_main.xml to Listing 8-10. reflect the Ul

Listing 8-10 activity_main.xml of FetchData Project

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical" >

<Button
android:id="@+id/buttonl"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:onClick="onClick"
android:text="Get File" />

<LinearLayout

Chapter 8 Network Communication 29

android:layout_width="wrap_content"
android:layout_height="wrap_content" >

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Status: " />

<TextView
android:id="@+id/status"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Not started" />
</LinearLayout>
</LinearLayout>

After we have done all these, we can compile and run the application. Figure 8-8 below shows
portions of the output display. Figure 8-8 (a) shows the screen when the application has started but
the service FetchData has not been started. One can start the service in the background by clicking
on the Get File button. When the FetchData service has finished its task, it broadcasts a signal to
DataReceiver, which displays a Toast message as shown in Figure 8-8 (b).

[] 5554:avd4.4
Al

I8! FetchData

Get File

Status: Not started

Fetch complete. Store URI: /storage/sdcard/

downloaded.txt

(@) (b)
Figure 8-8 UI of FetchData Project

8.7 AIDL (Android Interface Definition Language)

8.7.1 AIDL Interface

As we mentioned in Chapter 3, Android provides AIDL (Android Interface Definition Language)
to ease interprocess communication (IPC). It is similar to the traditional interface definition lan-
guage (IDL) that describes the interface between components in remote procedure calls (RPC) for
C/C++ applications. The language allows a user to define a common programming interface for a
client to communicate with a server, which runs a service. Normally, a process is not allowed to
access the memory of another process and the objects created by one process may not be under-
stood by the other. For two processes to communicate seamlessly, the exchanging objects must be
decomposed into primitives and marshalled. Android provides AIDL tools to do the marshalling.

30 The .aidl File

An AIDL interface is defined in a file ending with .aidl using the Java programming language
syntax. The file should be saved in the source code directories (src/) of both the application
hosting the service and any other application that binds to the service.

When we build an application that contains the .aidl file, the AIDL tools generate a correspond-
ing IBinder interface, which is saved in the project’s gen/ directory. The service program has to
implement an appropriate IBinder interface so that client applications can bind to the service and
call the IBinder methods to communicate with it.

In general, three steps are involved in building an AIDL service:

1. Create a file with .aidl extension to define the interface to be used by client processes.

2. Implement the interface based on the Java program generated from the .aid! file by the
Android SDK tools.

3. Expose the interface to clients by implementing a Service, where we override the onBind()
method.

8.7.2 The .aidl File

We have to create a .aidl file inside the project’s src/ directory. If Eclipse IDE is used in the
development, it automatically generates an IBinder interface file in the gen directory when we
save the .aidl file that has no syntax error. The Eclipse IDE also indicates any syntax error with a
red dot.

The syntax of a .aidl file is simple. We can declare an interface with one or more methods that
can take parameters and return values. Each .aidl can only define a single interface. If we need
to define more than one interface, we have to create multiple .aid! files inside the src directory.
AIDL supports all primitive types such as int, long, char, and boolean of the Java programming
language. It also suppots built-in Java classes including String, CharSequence, List, and Map.
The following shows an example of a simple .aidl file, named IRemoteService.aidl; the method
multiply is supposed to multiply two numbers and to return the product.

// IRemoteService.aidl
package comm.aidlcalc;

// Declare any non-default types here with import statements

/*% Example service interface x/

interface IRemoteService {
// You can pass values in, out, or inout.
// Primitive datatypes (e.g. int, char) can only be passed in.
float multiply (in float numl, in float num2);

A corresponding Java program, IRemoteService.java is generated inside the gen directory,
which looks like the following

package comm.aidlcalc;
// Declare any non-default types here with import statements
/** Example service interface */
public interface IRemoteService extends android.os.IInterface
{

/** Local-side IPC implementation stub class. =*/

public static abstract class Stub extends android.os.Binder

implements comm.aidlcalc.IRemoteService

private static final java.lang.String DESCRIPTOR =

Chapter 8 Network Communication 31

"comm.aidlcalc.IRemoteService";
/*% Construct the stub at attach it to the interface. */
public Stub ()

{
this.attachInterface (this, DESCRIPTOR) ;

public float multiply (float numl, float num2)
throws android.os.RemoteException;

8.7.3 Implement AIDL Interface

The AIDL tools generate a Java interface from a .aidl file. The interface includes a subclass named
Stub, which is an abstract implementation of its parent interface and declares all the methods as
shown in the above example. To implement the interface, we have to extend the generated Binder
interface, Stub and the methods defined in the .aid! file.

Here is an example implementation of the IRemoteService of the above example, using an
anonymous instance:

@Override
public IBinder onBind (Intent intent) {

return new IRemoteService.Stub () {
// Implement multiply ()
public float multiply (float a, float b)
throws RemoteException {
return a * Db;
}
}i
}

Note that by default, RPC calls are synchronous, meaning the the client waits for the server’s
result before executing the next instruction. Therefore, if the service takes a relatively long time to
finish the task of a request, we should not call the service from the main thread of the client’s activ-
ity, which might lead to the Android system displaying a dialog of Application is Not Responding.
To avoid this, we should typically call the service from a separate thread in the client.

8.7.4 Expose AIDL Interface to Clients

After implementing the remote service interface, we need to expose it to the clients, which will
bind to it. This is done by extending the Service class, and implement its onBind() method, which
will return an object of the class that implements Stub. The following is an example service that
exposes the IRemoteService interface discussed above to clients:

public class RemoteService extends Service
{
@Override
public void onCreate () {
super.onCreate () ;

32 A Remote Multiplier

@Override
public IBinder onBind(Intent intent) {

return new IRemoteService.Stub () {
public float multiply (float a, float Db)
throws RemoteException {
return a * b;

When a client activity calls bindService() to connect to this service, the client’s onService-
Connected() callback receives the IBinder object returned by the service’s onBind() method. The
client also needs to access the interface class. Therefore if the client is not in the same application
of the service, the client application must also have a copy of the .aidl file inside its src/ directory,
which will be used to generate the same Java program inside its gen/ directory.

When the client receives the IBinder object in the onServiceConnected() callback, it must call
the interface’s Strub.asInterface() to cast the returned parameter to the same interface type as the
service. The following is an example of such a callback:

class RemoteServiceConnection implements ServiceConnection

{

IRemoteService remoteService;

// Called when the connection with the service is established
public void onServiceConnected (ComponentName name,
IBinder boundService) {
remoteService =
IRemoteService.Stub.asInterface ((IBinder) boundService);
Toast .makeText (MainActivity.this, "Service connected",
Toast .LENGTH_LONG) .show () ;

// Called when connection with service disconnects unexpecteldy
public void onServiceDisconnected (ComponentName name) {
remoteService = null;

8.7.5 A Remote Multiplier

The Android developer site presents a couple of detailed and complex examples on remote service
communication. Here, to give readers a quick start of writing remote service applications, we
present a very simple example, in which the remote service simply accepts two numbers from a
client, multiplies them, and returns the product, and the client is responsible for the UI, accepting
two numbers from the user, and displaying the result on the screen. A remote service here means a
service that runs in a different process from that of the client. Actually, part of the code has already
been presented in the examples of the previous two sections.

Again, we use Eclipse IDE to create the project of this example. We call the project AidICalc,
the application AidlCalcServer, and the package, comm.aidlcalc. The followig are the steps of
creating and implementing this project.

Chapter 8 Network Communication 33

1. Asusual, we click on File and subsequent menus to create the project Aidl/Calc with package
name comm.aidlcalc, along with default files, including MainActivity.java.

2. Create the file IRemoteService.aidl: click File > New > File. Enter AidICalc/src/comm/aidlcalc
for parent folder, and IRemoteService.aidl for File name. Click Finish to create the file. Edit
the file to the following:

// IRemoteService.aidl
package comm.aidlcalc;
interface IRemoteService {
float multiply (in float numl, in float num2);}

3. Implement the service class RemoteService.java: Click File > New > Class, and enter the
apropriate names. Edit the file to the following:

//RemoteService. java
package comm.aidlcalc;

import android.app.Service;

import android.content.Intent;
import android.os.IBinder;

import android.os.RemoteException;
import android.util.Log;

public class RemoteService extends Service
{
@Override
public void onCreate () {
super.onCreate () ;

}

@Override
public IBinder onBind(Intent intent) {
return new IRemoteService.Stub() {

// Implement multiply()
public float multiply (float a, float Db)
throws RemoteException {
return a x b;
}
bi
}
@Override
public void onDestroy () {
super.onbDestroy () ;

This class implements our remote service, which returns an /Binder object from the on-
Bind() method. The AIDL-defined method multiply() is implemented as a method in the
inner class. This code exposes the remote service.

4. Modify the file MainActivity.java to the following:

34

A Remote Multiplier

// MainActivity. java
package comm.aidlcalc;

import
import
import
import
import
import
import
import
import
import

public

android

android

.app.Activity;
android.
android.
android.
android.

content. x;
os.Bundle;
os.IBinder;
os.RemoteException;

.text.TextUtils;
android.
android.
android.
android.

util.Log;

view.View;
view.View.OnClickListener;
widget.x;

class MainActivity extends
Activity implements View.OnClickListener

IRemoteService remoteService;
RemoteServiceConnection remoteConnection;
EditText t1;
EditText t2;
Button multiply;
TextView displayResult;

@Override

public void onCreate (Bundle savedInstanceState) ({
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);

bindActivityToService(); // starts the service

// Setup the UI

tl (EditText) findViewById(R.id.tl);

t2 = (EditText) findViewById(R.id.t2);

multiply = (Button) findViewById(R.id.multiply);
displayResult = (TextView) findViewById(R.id.displayResult);

multiply.setOnClickListener (this);

public void onClick (View view) {
float numl
// check if the fields are empty
(TextUtils.isEmpty (tl.getText () .toString())
|| TextUtils.isEmpty(t2.getText ().toString())) {

if

return;

0, num2 = 0, product = 0;

// read EditText and fill variables with numbers

numl

= Float.parseFloat (tl.getText () .toString());

num2 = Float.parseFloat (t2.getText () .toString());

Chapter 8 Network Communication 35

try {
product = remoteService.multiply (numl, num2);
} catch (RemoteException e) {
e.printStackTrace () ;
}
// form the output line
displayResult.setText (numl + " *« " + num2 + " = " + product

/ * %
+* This class implements the actual service connection, casting
* bound stub implementation of the service to AIDL interface.
*/
class RemoteServiceConnection implements ServiceConnection
{
//Called when the connection with the service is established
public void onServiceConnected (ComponentName name,
IBinder boundService) {
remoteService =
IRemoteService.Stub.asInterface ((IBinder) boundService);
Toast .makeText (MainActivity.this, "Service connected",
Toast .LENGTH_LONG) .show () ;

//Called when connection with service disconnects unexpected
public void onServiceDisconnected (ComponentName name) {
remoteService = null;
Toast .makeText (MainActivity.this, "Service disconnected",
Toast .LENGTH_LONG) .show () ;

/*x Binds this activity to the service. x/

private void bindActivityToService () {
remoteConnection = new RemoteServiceConnection();
Intent intent = new Intent();
intent.setClassName ("comm.aidlcalc",
comm.aidlcalc.RemoteService.class.getName ());

bindService (intent, remoteConnection, Context .BIND_AUTO_CREATE)

// Unbinds this activity from the service.

private void releaseService () {
unbindService (remoteConnection) ;
remoteConnection = null;

// Called when the activity is about to terminate
@Override
protected void onDestroy () {

)

4

36

A Remote Multiplier

releaseService () ;

As we have implemented the onBind() method in RemoteService, we need to establish a
connection between the service and our client (MainActivity). This is done by implementing
the ServiceConnection class in RemoteServiceConnection, where onServiceConnected()
and onServiceDiconnected() methods are implemented. These callbacks will get the stub
implementation of the remote service upon connection or disconnection.

Besides binding the activity to the remote service, the method bindActivityToService() also
starts the service.

The UI of the application is very simple. There are two EditText fields and a Button, which
represents multiplication. The MainActivity class has implemented the OnClickListener
class. When the Button is clicked, the multiply() method is invoked on the service as if
it were a local call.

. Modify the file res/layout/activity_main.xml for our UI as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill parent"

android:layout_height="fill_parent">

<TextView android:layout_width="fill parent"
android:layout_height="wrap_content" android:text="AidlCalc"
android:textSize="22sp" />

<LinearLayout

android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/linearLayoutl"
android:layout_marginLeft="12pt"
android:layout_marginRight="12pt"
android:layout_marginTop="4pt">

<EditText
android:layout_weight="1"
android:layout_height="wrap_content"
android:layout_marginRight="6pt"
android:id="@+id/t1"
android:layout_width="match_parent"
android:text="1989"
android:inputType="numberDecimal">

</EditText>

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="%"
android:textSize="10pt"
android:id="@+id/multiply">

</Button>

<EditText

Chapter 8 Network Communication 37

android:layout_height="wrap_content"
android:layout_weight="1"
android:layout_marginLeft="6pt"
android:id="@+id/t2"
android:layout_width="match_parent"
android:text="64"
android:inputType="numberDecimal">
</EditText>
</LinearLayout>
<TextView
android:layout_height="wrap_content"
android:layout_width="match_parent"
android:layout_marginLeft="6pt"
android:layout_marginRight="6pt"
android:textSize="12pt"
android:layout_marginTop="4pt"
android:id="@+id/displayResult"
android:gravity="center_horizontal">
</TextView>
</LinearLayout>

6. Add the service to the file res/AndroidManifest.xml as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="comm.aidlcalc"

</activity>
<service android:name=".RemoteService" />
</application>
</manifest>

7. Run the application. When we run the application, the multiplier service is started in the
background and the client activity presents us a Ul like the one shown in Figure 8-9 below.
When the activity has successfully connected to the service, it displays a Toast message,
saying Service connected as shown in the lower part of the figure. We can enter two numbers
and click the multiplication button, which calls the remote service to do the multiplication.
When the client receives the result, it displays the multiplication operation and the result as
shown in the upper half of the figure.

38

AidICalc

11989

= 64

1989.0 *64.0 = 127296.0

Figure 8-9 UI of AidICalc Project

A Remote Multiplier

I®! AidiCalcServer

Chapter 8 Network Communication

39

	Chapter 7 Thread Programming
	7.1 Processes and Threads
	7.2 Java Threads
	7.2.1 Thread Creation by Extending Thread Class
	7.2.2 Thread Creation by Implementing Runnable Interface
	7.2.3 Wait for a Thread

	7.3 Synchronization
	7.3.1 Mutual Exclusion
	7.3.2 Semaphore
	7.3.3 Producer-Consumer Problem
	7.3.4 Condition Variable
	7.3.5 Readers-Writers Problem

	7.4 Deadlocks

