
1

An Introduction to Digital Video Data Compression in Java

Fore June

Chapter 11 Video File Formats and Codec Player

11.1 Introduction

In Chapter 10, we have discussed how to play a video using data saved in the raw format
of a file. In reality, video data are saved in a predefined format. There have been numerous
video formats around and the data of most of them are saved in compressed form. In this
Chapter, we shall give a brief discussion on some popular formats and do a case study on
the .avi file format. Just as raw pixel data are often saved in .bmp format, and raw PCM
sound samples in .wav format, raw video data are often saved in .avi format. We shall
learn how to extract the raw video data from a .avi file so that we can play the video that
we discussed in Chapter 10 or process them in our own way. There exists utilities in the
Internet that allows one to convert from other video formats to uncompressed .avi format.
With the help of those utilities, we can download a video file saved in any format from the
Internet, convert it to uncompressed .avi and experiment the converted uncompressed data
with our own encoder, decoder, and video player.

11.2 Video Storage Formats

11.2.1 Requirements of Video File Format

There exists a large number of video file formats in the market not only because competing
companies create their own formats, hoping to push out competitors and to make their for-
mats standards, but also because there are legal needs of not overstepping competitors’ so
called intellectual property. The following sections examine some common characteristics
between the popular file formats. We summarize the requirements for a video file format
to be successful as follows. A video file format should be able to

1. store video and audio data,
2. provide fast, real-time playback on target viewing platforms,
3. provide efficient scrubbing (fast-forward and rewind while previewing),
4. store metadata (e.g. copyright, authorship, creation dates ...),
5. store additional tracks and multimedia data like thumbnails, subtitle tracks, alternate

language audio tracks ...,
6. allow for multiple resolutions,
7. provide file locking mechanisms,
8. allow for video editing,
9. provide integrity checking mechanism, and

10. perform segmentation of audio and video portions into packets for efficient Internet
transmission.

11.2.2 Common Internet Video Container File Format

A container file format is hierarchical in structure, and can hold different kinds of media
(audio, video, text ..) synchronized in time. The following are some popular container
formats, which can save various types of media data:

1

2 Case Study: AVI Files (.avi)

1. AVI (Audio Video Interleaved) – standard audio / video file format under Windows;
not suited for streaming as it does not have any standard way to store packetization
data.

2. MOV – Apple’s Quick Time format, better than AVI in synching audio and video;
also supports Windows, and Linux.

3. ASF (Advanced Streaming Format) – Microsoft’s proprietary format (.WMV,
.WMA), designed primarily to hold synchronized audio and video.

4. NSV (NullSoft Video) – by NullSoft (a division of AOL) for streaming.
5. RM (RealMedia) – Real’s streaming media files; can be extended to hold all types of

multimedia; supports Windows, and Linux platforms and many standards, including
MPEG-2, MPEG-4, Real, H263.

6. MP4 (MPEG-4) – almost identical to MOV but MPEG-4 players can handle only
MPEG-4 related audio, video and multimedia.

7. SWF, SWV (Shockwave Flash) – for Flash movies, typically containing vector-
drawn animations with scripting controls; also supports video codecs, JPEG still
images, remote loading of SWF files, XML data and raw text.

11.2.3 Simple Raw or Stream Video Format

Simple raw storage or stream formats store the compressed data without extra headers or
metadata. These are essentially live audio-video streams saved to disk. Below are some
examples:

1. MPEG-1, MPEG-2 – streams are composed of interleaved audio and video data ar-
ranged into groups of pictures.

2. MP3 – encode audio; part of MPEG-1.
3. DV (Digital Video) – used by modern digital cameras and video editing software.
4. .263 – video compressed with H.263 codec.
5. .RTP – Real Time Protocol data.

11.2.4 Internet Playlist, Index, and Scripting Format

Index formats have pointers linking to other resources. The following are some of this kind:

1. MOV – has several formats that do not contain actual video or audio data, but merely
point to other files.

2. RAM (RealAudio Metafile) – points to the URL of the actual media file (RealMedia
.RM or RealAudio .RA).

3. ASX (Active Streaming Index) – indexes files that work in Windows Media system
and point to the content held in an ASF media file.

4. SMIL (Synchronized Multimedia Integration Language) – provides instructions to
a media player on how to present a multimedia interface and what content to display.

11.3 Case Study: AVI Files (.avi)

AVI (Audio Video Interleaved) is a file format defined by Microsoft for use in applica-
tions that capture, edit and play back audio-video sequences. Just as raw pixel data are

Chapter 11 Video File Formats and Codec Player 3

often saved in .bmp format, and raw PCM sound samples in .wav format, raw video data
are often saved in .avi format. It is a special case of RIFF (Resource Interchange File For-
mat) and is the most commonly used format for storing audio/video data in a PC. An AVI
file can be embedded in a web page using a link like:

< A HREF=“http://www.somedomain.com/movie.avi” > A Movie

In order that your Apache Web server is able to handle avi files, you need to add in the
configuration file the following statement.

AddType video/avi .avi

AVI is considered as an obsolete video/audio file format as it lacks many contemporary
and crucial features to support streaming and image processing. However, it has been ex-
tended by OpenDML to include some of those features.

11.3.1 RIFF File Format

The AVI file format is based on the RIFF (resource interchange file format) document
format. A RIFF file consists of a RIFF header followed by zero or more lists and chunks;
it uses a FOURCC (four-character code) to denote a text header. A FOURCC is a 32-
bit unsigned integer created by concatenating four ASCII characters. For example, ‘abcd’
= 0x64636261. The AVI file format uses FOURCC code to identify stream types, data
chunks, index entries, and other information. The RIFF file format has the following form.

1. A RIFF header consists of
‘RIFF’ fileSize fileType (data)

where

◦ ‘RIFF’ is the literal FOURCC code ‘RIFF’,

◦ fileSize is a 4-byte value indicating the size of the data in the file including the size
of the fileType plus the size of the data that follows,

◦ fileType is a FOURCC that identifies the specific file type,

◦ data consists of chunks and lists in any order.

2. A chunk consists of
chunkID chunkSize chunkData

where

◦ chunkID is a FOURCC that identifies the data contained in the chunk,

◦ chunkSize is a 4-byte value giving the size of data in chunkData not including
padded values,

◦ chunkData is zero or more bytes of data, padded to nearest WORD boundary.

3. A list consists of
‘LIST’ listSize listType listData

where

4 Case Study: AVI Files (.avi)

◦ ‘LIST’ is the literal FOURCC code ‘LIST’,

◦ listSize is a 4-byte value, indicating the size of the list,

◦ listType is a FOURCC code specifying the list type,

◦ listData consists of chunks or lists, in any order.

Table 11-1 shows some sample data from an AVI file. The data are displayed in hex-
adecimal; the corresponding ASCII characters are printed on the right if they are printable
otherwise a dot is printed. Some comments are shown at the far right to indicate what the
data represent.

Table 11-1 Sample AVI Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0123456789012345]
52 49 46 46 DC 6C 57 09 41 56 49 20 4C 49 53 54 |RIFF.lW.AVI LIST|RIFF fileSize

fileType LIST
CC 41 00 00 68 64 72 6C 61 76 69 68 38 00 00 00 |.A..hdrlavih8...|listSize

listType avih structSize
50 C3 00 00 00 B0 04 00 00 00 00 00 10 00 00 00 |P...............|

microSecondPerFrame maxBytesPerSec
A8 02 00 00 00 00 00 00 01 00 00 00 00 84 03 00 |................|totalFrames

initFrames streams suggestedBufferSize
40 01 00 00 F0 00 00 00 00 00 00 00 00 00 00 00 |@...............|width height
00 00 00 00 00 00 00 00 4C 49 53 54 74 40 00 00 |........LISTt@..|
73 74 72 6C 73 74 72 68 38 00 00 00 76 69 64 73 |strlstrh8...vids|
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
64 00 00 00 D0 07 00 00 00 00 00 00 A8 02 00 00 |d...............|
00 84 03 00 10 27 00 00 00 00 00 00 00 00 00 00 |.....’..........|
40 01 F0 00 73 74 72 66 28 00 00 00 28 00 00 00 |@...strf(...(...|
40 01 00 00 F0 00 00 00 01 00 18 00 00 00 00 00 |@...............|
00 84 03 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00 00 00 00 69 6E 64 78 F8 3F 00 00 04 00 00 00 |....indx.?......|
01 00 00 00 30 30 64 62 00 00 00 00 00 00 00 00 |....00db........|
00 00 00 00 0C 44 00 00 00 00 00 00 00 40 00 00 |.....D.......@..|
.
.
4C 49 53 54 38 F9 56 09 6D 6F 76 69 69 78 30 30 |LIST8.V.moviix00|LISTlistSize

listType indexBlock
F8 3F 00 00 02 00 00 01 A8 02 00 00 30 30 64 62 |.?..........00db|

....00db(uncompress frame)

As we can see from the sample avi data of Table 11-1, a two-character code is used to
define the type of information in the chunk:

Two-character code Description
db Uncompressed video frame
dc Compressed video frame
pc Palette change
wb Audio data

For example, if stream 0 contains audio, the data chunks for that stream would have the
FOURCC ‘00wb’. If stream 1 contains video, the data chunks for that stream would have
the FOURCC ‘01db’ or ‘01dc’.

Chapter 11 Video File Formats and Codec Player 5

11.3.2 AVI RIFF Format

As shown in Table 11-1, the FOURCC ‘AVI ’ in a RIFF header identifies the file to be an
AVI file. An AVI file has two mandatory LIST chunks, defining the format of the streams
and the stream data, respectively. An AVI file might also include an index chunk, indicating
the address of the data chunks of the file; it has the following form (Table 11-2):

Table 11-2 AVI RIFF Format
RIFF (’AVI ’

LIST (’hdrl’ ...)
LIST (’movi’ ...)
[’idx1’ ()]

)

The ‘hdrl’ list defines the format of the data and is the first mandatory LIST chunk. The
‘movi’ list contains the data for the AVI sequence and is the second required LIST chunk.
An optional index (‘idx1’) chunk can follow the ‘movi’ list. The index contains a list of the
data chunks and their location in the file. If we expand ‘hdrl’ and ‘movi’ in Table 11-2, we
shall get a form as shown below:

RIFF (’AVI ’
LIST (’hdrl’//header length

’avih’()
LIST (’strl’//stream length

’strh’()
’strf’()
[’strd’()]
[’strn’()]
...
)

...
)

LIST (’movi’
{SubChunk | LIST (’rec ’

SubChunk1
SubChunk2
...
)

...
}
...
)

[’idx1’ ()]
)

The ‘hdrl’ list begins with the main AVI header, which is contained in an ‘avih’ chunk.
The main header contains global information for the entire AVI file, such as the number of
streams within the file and the width and height of the AVI sequence. This main header
structure is shown below:

6 Case Study: AVI Files (.avi)

typedef struct _avimainheader {
FOURCC fcc; //’avih’
DWORD cb; //size of structure, not including 1st 8 bytes
DWORD dwMicroSecPerFrame;
DWORD dwMaxBytesPerSec;
DWORD dwPaddingGranularity;
DWORD dwFlags;
DWORD dwTotalFrames;
DWORD dwInitialFrames;
DWORD dwStreams;
DWORD dwSuggestedBufferSize;
DWORD dwWidth;
DWORD dwHeight;
DWORD dwReserved[4];

} AVIMAINHEADER;

One or more ‘strl’ lists follow the main header. A ‘strl’ list is required for each data
stream. Each ‘strl’ list contains information about one stream in the file, and must contain
a stream header chunk (‘strh’) and a stream format chunk (‘strf’). In addition, a ‘strl’ list
might contain a stream-header data chunk (‘strd’) and a stream name chunk (‘strn’). The
stream header chunk (‘strh’) consists of an AVISTREAMHEADER structure as shown in
Table 11-3.

Table 11-3 AVI Main Stream Header

typedef struct _avistreamheader {
FOURCC fcc;
DWORD cb;
FOURCC fccType;//’vids’-video, ’auds’-audio, ’txts’-subtitle
FOURCC fccHandler;
DWORD dwFlags;
WORD wPriority;
WORD wLanguage;
DWORD dwInitialFrames;
DWORD dwScale;
DWORD dwRate;
DWORD dwStart;
DWORD dwLength;
DWORD dwSuggestedBufferSize;
DWORD dwQuality;
DWORD dwSampleSize;
struct {

short int left;
short int top;
short int right;
short int bottom;

} rcFrame;
} AVISTREAMHEADER;

One can also express Digital Video (DV) data in the AVI file format. The following
example shows the AIFF RIFF form for an AVI file with one DV data stream, expanded
with completed header chunks.

Chapter 11 Video File Formats and Codec Player 7

Example AVI File With One DV Stream

00000000 RIFF (0FAE35D4) ’AVI ’
0000000C LIST (00000106) ’hdrl’
00000018 avih (00000038)

dwMicroSecPerFrame : 33367
dwMaxBytesPerSec : 3728000
dwPaddingGranularity : 0
dwFlags : 0x810 HASINDEX|TRUSTCKTYPE
dwTotalFrames : 2192
dwInitialFrames : 0
dwStreams : 1
dwSuggestedBufferSize : 120000
dwWidth : 720
dwHeight : 480
dwReserved : 0x0

00000058 LIST (0000006C) ’strl’
00000064 strh (00000038)

fccType : ’iavs’
fccHandler : ’dvsd’
dwFlags : 0x0
wPriority : 0
wLanguage : 0x0 undefined
dwInitialFrames : 0
dwScale : 100 (29.970 Frames/Sec)
dwRate : 2997
dwStart : 0
dwLength : 2192
dwSuggestedBufferSize : 120000
dwQuality : 0
dwSampleSize : 0
rcFrame : 0,0,720,480

000000A4 strf (00000020)
dwDVAAuxSrc : 0x........
dwDVAAuxCtl : 0x........
dwDVAAuxSrc1 : 0x........
dwDVAAuxCtl1 : 0x........
dwDVVAuxSrc : 0x........
dwDVVAuxCtl : 0x........
dwDVReserved[2] : 0,0

000000CC LIST (0FADAC00) ’movi’
0FADACD4 idx1 (00008900)

11.4 Utility Program for Reading AVI Files

In order to extract the data from an AVI file, we need a program that can understand the
AVI format. Rather than reinventing the wheel and developing such a program, which is
not directly related to video compression, we shall make use of some existing open-source
libraries and code to help us do the job.

We shall utilize the ImageJ library to help us read uncompressed .avi files. ImageJ is
a public domain java image processing and analysis program. You may download it from
the site,

http://rsb.info.nih.gov/ij/

8 Utility Program for Reading AVI Files

which also contains detailed documentation of the package. You may also obtain it from
the web site of this book. The package is commonly referred to as ij and comes as a jar file
named ij.jar.

You may run ImageJ, either as an online applet or as a downloadable application, on
any computer with java1.5 or later installed. It can display, edit, analyze, process, save and
print 8-bit, 16-bit and 32-bit images. It can read many image formats including TIFF, GIF,
JPEG, BMP, DICOM, FITS and ‘raw’. It supports ‘stacksx’ (and hyperstacks), a series of
images that share a single window.

Actually, we only have to use one of the programs, AVI Reader.java in the package.
AVI Reader is written by Michael Schmid, base on a plugin by Daniel Marsh and Wayne
Rasband. It only has very limited support for processing .avi files but the functions are rich
enough for our purpose, which is mainly to read the data of an uncompressed .avi file. As
of this writing, AVI Reader only supports the following formats:

1. uncompressed 8 bit with palette (=LUT)
2. uncompressed 8 and 16 bit grayscale
3. uncompressed 24 and 32 bit RGB (alpha channel ignored)
4. uncompressed 32 bit AYUV (alpha channel ignored)
5. various YUV 4:2:2 compressed formats
6. png or jpeg-encoded individual frames.

It also has the following limitations:

1. Most MJPG (motion-JPEG) formats are not read correctly.
2. Does not read avi formats with more than one frame per chunk.
3. Palette changes during the video are not supported.
4. Out-of-sequence frames (sequence given by index) not supported.
5. Different frame sizes in one file (rcFrame) are not supported.
6. Conversion of (A)YUV formats to grayscale is non-standard: all 255 levels are kept

as in the input (i.e. the full dynamic range of data from a frame grabber is preserved).

The above information of AVI Reader can be found at the site http://rsbweb.nih.gov/ij/plugins/avi-
reader.html. The relations of AVI Reader class to other java classes are shown below:

java.lang.Object
l-- ij.ImageStack

l-- ij.VirtualStack
l--ij.plugin.AVI_Reader

AVI Reader extends Virtual Reader and implements PlugIn of ij. It has only one con-
structor, “AVI Reader()”. The following are some of the commonly used methods of
AVI Reader:

public int getWidth()

Returns the image width of a frame

public int getHeight()

Returns the image height of a frame

public int getSize()

Returns the number of frames in the video

Chapter 11 Video File Formats and Codec Player 9

public ImageStack makeStack(java.lang.String path,

int firstFrameNumber,
int lastFrameNumber,
boolean isVirtual,
boolean convertToGray,
boolean flipVertical)

Create an ImageStack from an avi file with given path.

Parameters:
path - Directoy+filename of the avi file
firstFrameNumber - Number of first frame to read (starts from 1)
lastFrameNumber - Number of last frame to read or 0 for reading all,

-1 for all but last...
isVirtual - Whether to return a virtual stack
convertToGray - Whether to convert color images to grayscale

Returns:
Returns the stack; null on failure. The stack returned may be

non-null, but have a length of zero if no suitable frames were
found

Listing 11-1 shows a simple example of using AVI Reader to play an uncompressed .avi
file and to print out some parameters of the .avi file. It uses the the method getPixels() to
read the RGB pixel values from the file and put them into an integer array:

Program Listing 11-1: PlayAVI Plays Uncompressed AVI Video Using AVI Reader
——————————————————————————————————–

/*
PlayAVI.java
Demonstrates the use of AVI_Reader of ImageJ to
play an uncompressed .avi file.

*/
import java.io.*;
import java.awt.Frame;
import java.awt.image.*;
import java.awt.image.ColorModel;
import java.awt.color.ColorSpace;
import java.awt.*;
import javax.media.jai.widget.ScrollingImagePanel;
import javax.media.jai.*;
import ij.plugin.AVI_Reader;

public class PlayAVI {

public static void main(String[] args) throws InterruptedException {
if (args.length != 1) {

System.out.println("Usage: java " +
"AVI_input_image_filename");

System.exit(-1);
}

AVI_Reader avi = new AVI_Reader();
//read images from AVI file to virtual stack
avi.makeStack (args[0], 0, 0, true, false, false);

int vsize = avi.getSize(); //number of images in the virtual stack
int width = avi.getWidth(); //image width
int height = avi.getHeight(); //image height

10 Utility Program for Reading AVI Files

System.out.printf("total frames=%d, width=%d, height=%d \n",
vsize, width, height);

//create a TiledImage using a ColorModel and a SampleModel
ColorSpace colorspace = ColorSpace.getInstance (ColorSpace.CS_sRGB);
int[] bits = { 8, 8, 8 };
ColorModel colormodel = new ComponentColorModel(colorspace, bits,

false, false, Transparency.OPAQUE, DataBuffer.TYPE_BYTE);
TiledImage outImage;
SampleModel samplemodel = new BandedSampleModel(DataBuffer.TYPE_BYTE,

width, height, 3);
outImage = new TiledImage(0,0,width,height,0,0,samplemodel,colormodel);
ScrollingImagePanel panel = new ScrollingImagePanel(outImage,width,height);
Frame window = new Frame("AVI_Reader Demo");
window.add(panel);
window.pack();
window.show();

//render the AVI images
for (int s = 1; s < vsize; ++s) {

Object obj = avi.getPixels (s);
if (obj instanceof int[]) {

int[] pixels = (int[]) obj;
int k = 0;
for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {
int c, n = 16;
//consider colors R, G, B
for (int i = 0; i < 3; ++i) {
c = (int)(0x000000ff & (pixels[k]>>n));
outImage.setSample(x, y, i, c);
n -= 8;

}
k++;

}
}
panel.set (outImage);
Thread.sleep (60);

} else {
System.out.println("Only supports integer pixels\n");
System.exit (-1);

}
}
Thread.sleep(4000); //sleep for four seconds
window.dispose(); //close the frame

}
}

——————————————————————————————————

You can simply compile the program with the command “javac PlayAVI.java”. How-
ever, you must point your class path to the correct location of the ImageJ library. The
following are typical commands to set the class path, compile and run the program,

export CLASSPATH=$CLASSPATH:/path to library/ImageJ/ij.jar
javac PlayAVI.java
java PlayAVI ../data/jvideo.avi

Chapter 11 Video File Formats and Codec Player 11

where path to library is the path to the directory that saves the ImageJ library, and “jvideo.
avi” is a sample uncompressed .avi file which can be downloaded from the web site of this
book.

11.5 A Simple Video Codec for Intra Frames

In previous chapters, we have discussed the coding and decoding of intra-frames of a video
as well as playing videos using a solution for the producer-consumer problem. In this
section, we combine all the code and put together a simple video codec (coder-decoder
) that does intra-frame coding and decoding. At this point, our codec does not consider
inter-frame coding that utilizes Motion Estimation (ME) and Motion Compensation (MC
). Also, the pre-calculated Huffman code is very brief and is far from optimized.

Like what we did before, we use integer arithmetic in the implementation to speed up
the computing process; we utilize the ImageJ and Java Imaging packages to simplify the
program and make it more robust. The codec can compress an uncompressed AVI file and
play it back. We assume that the video data of the avi file are saved using the 24-bit RGB
colour model. Most of the code presented here have been discussed in previous sections or
chapters.

11.5.1 Compressed File Header

We first define our own header of the compressed file. The header contains the basic infor-
mation of the compressed data and consists of 24 bytes as listed in Table 11-4.

Table 11-4
Bytes Information
0 - 9 contains “FORJUNEV” as I.D. of file

10 - 11 frame rate (frames per second)
12 - 15 number of frames
16 - 17 width of an image frame
18 - 19 height of an image frame

20 bits per pixel
21 quantization method
22 extension, 0 for uncompressed data
23 dummy

The default extension of such a compressed file is .fjv. The dummy byte in the header is
used for byte-alignment so that the header makes up 24 bytes rather than 23 bytes; it may
be used for other purposes in the future. This header can be implemented by defining a
class like the following:

12 A Simple Video Codec for Intra Frames

class Vheader {
public byte id[] = new byte[10]; //I.D. of file, ‘‘FORJUNEV"
public short fps; //frame per second
public int nframes; //number of frames
public short width; //width of video frame
public short height; //height of video frame
public byte bpp; //bits per pixel
public byte qmethod; //quantization method
public byte ext; //extension
public byte dummy; //for byte alignment,make header size=24

//Constructor
Vheader ()
{

byte src [] = {’F’, ’O’, ’R’, ’J’, ’U’, ’N’, ’E’, ’V’, 0, 0};
System.arraycopy(src, 0, id, 0, src.length);//set header I.D.

}

//Constructor
Vheader (short w, short h, short frameRate, int numVideoFrames)
{

this(); //call the other constructor
//System.out.printf("%s\n", id);
fps = frameRate; //frame per second
nframes = numVideoFrames; //number of frames
width = w; //image width
height = h; //image height
bpp = 8; //number of bits per pixel
qmethod = 1; //quantization method
ext = 1; //file contains compressed data
dummy = 0;

}
......

}

At present, we set the quantization method variable qmethod to 1. The extension vari-
able ext is set to 0 if the .fjv data are uncompressed and 1 if they are compressed. In
summary, at this point the encoding and decoding processes consist of the following steps:

1. Encoding:

1. Read a 24-bit RGB image frame from an uncompressed avi file.

2. Decompose the RGB frame into 16× 16 macroblocks.

3. Transform and down-sample each 16× 16 RGB macroblock to six 8× 8 YCbCr
sample blocks using YCbCr 4:2:0 format.

4. Apply Discrete Cosine Transform (DCT) to each 8 × 8 sample block to obtain
an 8× 8 block of integer DCT coefficients.

5. Forward-quantize the DCT block.

6. Reorder each quantized 8× 8 DCT block in a zigzag manner.

7. Run-level encode each quantized reordered DCT block to obtain 3D (run, level,
last) tuples.

8. Use pre-calculated Huffman codewords along with sign bits to encode the 3D
tuples.

Chapter 11 Video File Formats and Codec Player 13

9. Save the output bit stream of the Huffman coder in a file.

2. Decoding:

1. Construct a Huffman tree from pre-calculated Huffman codewords.
2. Read a bit stream from the encoded file and traverse the Huffman tree to recover

3D run-level tuples to obtain 8× 8 DCT blocks.
3. Reverse-reorder and inverse-quantize each DCT block.
4. Apply Inverse DCT (IDCT) to resulted DCT blocks to obtain 8x8 YCbCr sample

blocks.
5. Use six 8× 8 YCbCr sample blocks to obtain a 16× 16 RGB macroblocks.
6. Combine the RGB macroblocks to form an image frame.

We have discussed all of the above steps and their implementations in detail in previous
chapters. We just need to make very minor modifications to accomplish the task. The two
files Encoder.java, and Decoder.java discussed in Chapter 6 need some modifications.
The file CircularQueue.java also needs modification because we now use AVI Reader
to put samples into the circular queue. On the other hand, the following files can be used
without any any modifications:

Table 11-5
Files Chapter

RgbYcc.java 5
common.java 5
DctVideo.java 6
Quantizer.java 7
Reorder.java 7
Run3D.java 7
Run.java 7
BitIO.java 8
Hcodec.java 8
Dtables.java 8

Of course, to use the the classes of the files, we need to point the class path to the di-
rectories that contain those classes. Suppose our current working directory is 11/ and the
ImageJ package is in 11/avi/. The following is a typical command that may be used to set
the class path to point to the necessary classes discussed above:

export CLASSPATH=$CLASSPATH:../5/:../6/:../7/:../8:../10/:avi/ImageJ/ij.jar

The files that we need to modify or develop in this section (in the direcotry 11/) include
the following:

AviFrameProducer.java Decoder.java Encoder.java Vheader.java
CircularQueue.java Display.java Vcodec.java

We are going to discuss these new files briefly below. Again, the whole package along with
a couple of sample AVI files are provided in the book’s web site at:

14 A Simple Video Codec for Intra Frames

http://www.forejune.com/jvcompress/.

1. Vheader.java

The class Vheader reads and writes the header of a .fjv file defined in Table 11-4.
Its data members and constructors are shown above in section 11.5.1.

2. Display.java

The class Display simply displays a frame in the window. It uses the ColorModel,
ColorSpace and SampleModel discussed in Chapter 10 to create a TiledImage which
is attached to a ScrollingImagePanel. It gets the image data from the head of the
shared circular buffer and send the data to the panel using the method set():

Program Listing 11-2: Display Class Renders the Image of a Frame
—————————————————————————————————

public class Display {
private CircularQueue buf;
private int height;
private int width;
private TiledImage outImage;
private ScrollingImagePanel panel;
private Frame window;

//constructor
public Display (CircularQueue q, int w, int h)
{

buf = q;
width = w;
height = h;

//create a TiledImage using a ColorModel and a SampleModel
ColorSpace colorspace=ColorSpace.getInstance(ColorSpace.CS_sRGB);
int[] bits = { 8, 8, 8 };
ColorModel colormodel = new ComponentColorModel(colorspace,

bits,false,false,Transparency.OPAQUE, DataBuffer.TYPE_BYTE);
SampleModel samplemodel=new BandedSampleModel

(DataBuffer.TYPE_BYTE, width, height, 3);
outImage=new TiledImage(0,0,width,height,0,0,samplemodel,

colormodel);
panel = new ScrollingImagePanel(outImage,width,height);
window = new Frame("Player");
window.add(panel);
window.pack();
window.show();

}

public void display_frame()
{

//render the images
int h = buf.getHead();
int k = 0;
for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {
int c;
//consider colors R, G, B
for (int i = 0; i < 3; ++i) {

Chapter 11 Video File Formats and Codec Player 15

c = (int)(buf.buffer[h][k++]);
outImage.setSample(x, y, i, c);

}
}

}
panel.set (outImage);

}

public void close_window()
{

window.dispose(); //close the frame
}
}

—————————————————————————————————–

3. AviFrameProducer.java:

The class AviFrameProducer makes use of AVI Reader to read frames from an
avi file and put the frames in the shared circular buffer. It acts as a producer which
produces uncompressed frames for consumers to consume:

Program Listing 11-3: AviFrameProducer is a Producer of Image Frames
—————————————————————————————————

import ij.plugin.AVI_Reader;

//producer
class AviFrameProducer extends Thread {

private AVI_Reader avi;
private CircularQueue buf;

//constructor
public AviFrameProducer(AVI_Reader aviReader, CircularQueue q)
{

avi = aviReader;
buf = q;

}

public void run()
{

//get number of images in the virtual stack
int vsize = avi.getSize();
int nFrame = 1;
while (!buf.quit) {

buf.waitIfBufferFull();
//produces data
buf.putSamples (avi, nFrame); //put samples in buffer
buf.tailInc();
++nFrame;
if (nFrame > vsize)
buf.quit = true;

}
}

}
}

—————————————————————————————————–

16 A Simple Video Codec for Intra Frames

4. Vcodec.java:

The class Vcodec consists of the entry point main () function. The main() asks for
an AVI file as input to encode. If a switch “-d” is provided, it tries to decode the
input file whose data are saved in the .fjv format; it plays the video data using the
Display class. It utilizes Encoder to encode uncompressed video data and Decoder
to decode compressed data. In the encoding process, AviFrameProducer acts as
a producer and puts image data in the shared circular buffer; the Encoder acts as
a consumer which gets data from the circular buffer and encodes them. It also uses
Display to render the frames; if you do not want to render the frames while encoding,
simply comment out the statement “display.display frame();” in the run() method of
the file “Encoder.java”.

In the decoding process, the Decoder is a producer and puts data in the shared circu-
lar buffer; we have not written a player class which acts as a consumer to fetch data
from the buffer and plays them on the screen; instead the Decoder renders the frame
itself after decoding it.
You may compile all the java programs in the directory 11/ using the command,
“javac *.java” after setting the CLASSPATH correctly. The following are two ex-
amples of using Vcodec to compress and decompress video data. The following
command compresses the avi file “t.avi” in the directory:

java Vcodec t.avi

It encodes the video data and saves the compressed data in the file “t.fjv”. The
following command decodes the compressed data and renders the images on the
screen:

java Vcodec -d t.fjv

The programs presented here are for intra-frame coding. No temporal correlations have
been considered. However, the code presented here forms the basis for implementations of
more advanced compression techniques. In the next two chapters, we discuss the imple-
mentations of inter-frame coding and codecs that exploit temporal redundancies. A lot of
the code presented here will be reused in those implementations.

Chapter 11 Video File Formats and Codec Player 17

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth.

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

An Introduction to 3D Computer Graph-
ics, Stereoscopic Image, and Anima-
tion in OpenGL and C/C++

by Fore June

November 2011
ISBN-13: 978-1466488359

	Chapter 11 Video File Formats and Codec Player
	11.1 Introduction
	11.2 Video Storage Formats
	11.2.1 Requirements of Video File Format
	11.2.2 Common Internet Video Container File Format
	11.2.3 Simple Raw or Stream Video Format
	11.2.4 Internet Playlist, Index, and Scripting Format

	11.3 Case Study: AVI Files (.avi)
	11.3.1 RIFF File Format
	11.3.2 AVI RIFF Format

	11.4 Utility Program for Reading AVI Files
	11.5 A Simple Video Codec for Intra Frames
	11.5.1 Compressed File Header

