
1

An Introduction to Digital Video Data Compression in Java

Fore June

Chapter 3 Imaging Basics

3.1 Sampling and Quantization

Sampling is the process of examining the value of a continuous function at regular inter-
vals. We might measure the voltage of an analog waveform every millisecond, or measure
the brightness of a photograph every millimeter, horizontally and vertically. Sampling rate
is the rate at which we make the measurements and can be defined as

Sampling rate =
1

Sampling interval
Hz

If sampling is performed in the time domain, Hz is cycles/sec.
In the case of image processing, we can regard an image as a two-dimensional light-

intensity function f(x, y) of spatial coordinates (x, y). Since light is a form of energy,
f(x, y) must be nonnegative. In order that we can store an image in a computer, which
processes data in discrete form, the image function f(x, y) must be digitized both spa-
tially and in amplitude. Digitization of the spatial coordinates (x, y) is referred to as
image sampling or spatial sampling, and digitization of the amplitude f is referred
to as quantization. Moreover, for moving video images, we have to digitize the time
component and this is called temporal sampling. Digital video is a representation of a
real-world scene, sampled spatially and temporarily and with the light intensity value quan-
tized at each spatial point. A scene is sampled at an instance of time to produce a frame,
which consists of the complete visual scene at that instance, or a field, which consists of
odd- or even-numbered lines of spatial samples. Figure 3-1 shows the concept of spatial
and temporal sampling of videos.

Temporal Samples

Spatial Samples

Figure 3-1 Temporal Sampling and Spatial Sampling

3.1.1 Spatial Sampling

Usually, a two-dimensional (2D) sampled image is obtained by projecting a video scene
onto a 2D sensor, such as an array of Charge Coupled Devices (CCD array) . For colour

1

2 Sampling and Quantization

images, each colour component is filtered and projected onto an independent 2D CCD ar-
ray. The CCD array outputs analogue signals representing the intensity levels of the colour
component. Sampling the signal at an instance in time produces a sampled image or frame
that has specified values at a set of spatial sampling points in the form of an N ×M array
as shown in the following equation.

f(x, y) ≈



f(0, 0) f(0, 1) ... f(0,M − 1)

f(1, 0) f(1, 1) ... f(1,M − 1)

.

.

f(N − 1, 0) f(N − 1, 1) ... f(N − 1,M − 1)


(3.1)

The right image of Figure 3-2 below shows that a rectangular grid is overlaid on a 2D
image to obtain sampled values f(x, y) at the intersection points of the grid. We may ap-
proximately reconstruct the sampled image by representing each sample as a square picture
element (pixel) as shown on the left image of Figure 3-2. The visual quality of the recon-
structed image is affected by the choice of the sampling points. The more sampling points
we choose, the higher resolution the resulted sampled image will be. Of course, choosing
more sampling points requires more computing power and storage.

Figure 3-2 Spatial Sampling

3.1.2 Temporal Sampling

Temporal sampling of video images refers to the process of taking a rectangular ‘snap-
shot’ of the image signal at regular time intervals. The rate at which we take the the snap-
shots is the sampling rate and is defined as the frame rate or field rate. When we play
back a sequence of frames obtained in this way at the same rate, an illusion of motion may
be created. A higher frame rate produces apparently smoother motion but requires more

Chapter 3 Imaging Basics 3

computing power and storage to process and save the larger number of samples. Early
silent films used anything between 16 and 24 frames per second (fps). Current television
standards use sampling rate of 25 or 30 frames per second.

There are two commonly used temporal sampling techniques, progressive sampling
and interlaced sampling. Progressive sampling is a frame-based sampling technique
where a video signal is sampled as a series of complete frames. Film is a progressive
sampling source for video. Interlaced sampling is a field-based sampling technique where
the video is sampled periodically at two sample fields; half of the data in a frame (one field
) are scanned at one time. To reconstruct the frame, a pair of sample fields are superim-
posed on each other (interlaced). In general, a field consists of either the odd-numbered
or even-numbered scan lines within a frame as shown in Figure 3-3.

Start of
odd field
↓

Start of
even field
↓

End of
odd field

↑
End of
even field

↑

Figure 3-3 Interlaced Scanning
An interlaced video sequence contains a sequence of fields, each of which consists of half
the data of a complete frame. The interlaced sampling technique can give the appearance
of smoother motion as compared to the progressive sampling method when the data are
sampled at the same rate. This is due to the “motion blur” effect of human eyes; the
persistence of vision can cause images shown rapidly in sequence to appear as one. When
we rapidly switch between two low quality fields, they appear like a single high quality
image. Because of this advantage, most current video image formats, including several
high-definition video standards, use interlaced techniques rather than progressive methods.

3.1.3 Quantization

Quantization is the procedure of constraining the value of a function at a sampling point
to a predetermined finite set of discrete values. Note that the original function can be either
continuous or discrete. For example, if we want to specify the temperature of Los Angels,
ranging from 0oC to 50oC, up to a a precision of 0.05oC, we must be able to represent
1001 possible values, which require 10 bits to represent one sample. On the other hand,
if we only need a precision of 1oC, we only have 51 possible values requiring 6 bits for
the representation. For image processing, higher precision give higher image quality but
requires more bits in the representation of the samples. We will come back to this topic and
discuss how to use quantization to achieve lossy image compression.

4 Color Spaces

3.2 Color Spaces

To describe an image, we need a way to represent the color information. A gray-level
image only requires one number to indicate the brightness or luminance of each spatial
sample. Very often, we employ a color model to precisely describe the color components
or intensities. A color model can be regarded as an abstract mathematical model that
describes how colors are presented as tuples of numbers, typically as three or four values
or color components; the resulting set of colors that define how the components are to be
interpreted is called a color space. The commonly used RGB color model naturally fits
the representation of colors by computers. However, it is not a good model for studying the
characteristics of an image.

3.2.1 RGB Color Model

X-ray, light, infrared radiation, microwave and radio waves are all electromagnetic (EM
) waves with different wavelengths. Light waves lie in the visible spectrum with a narrow
wavelength band from about 350 to 780 nm. The retina of a human eye can detect only EM
waves lying within this visible spectrum but not anything outside. The eye contains two
kinds of light-sensitive receptor cells, cones and rods that can detect light.

The cones are sensitive to colors and there are three types of cones, each responding to
one of the three primary colors, red, green and blue. Scientists found that our perception of
color is a result of our cones’ relative response to the red, green and blue colors. Any color
can be considered as a combination of these three colors with certain intensity values. The
human eye can distinguish about 200 intensities of each of the red, green and blue colors.
Therefore, it is natural that we represent each of these colors by a byte which can hold 256
values. In other words, 24 bits are enough to represent the ‘true’ color. More bits will not
increase the quality of an image as human eyes cannot resolve the extra colors. Each eye
has 6 to 7 million cones located near the center of the eye, allowing us to see the tiny details
of an object.

On the other hand, the rods cannot distinguish colors but are sensitive to dim light.
Each eye has 75 million to 150 millions rods located near its corner, allowing us to detect
peripheral objects in an environment of near darkness.

We can characterize a visible color by a function C(λ) where λ is the wavelength of
the color in the visible spectrum. The value for a given wavelength λ gives the relative
intensity of that wavelength in the color. This description is accurate when we measure the
color with certain physical instrument. However, the human visual system (HVS) does
not perceive color in this way. Our brains do not receive the entire distribution C(λ) of the
visible spectrum but rather three values – the tristimulus values – that are the responses of
the three types (red, green and blue) of cones to a color. This human characteristics leads
to the formulation of the trichromatic theory: If two colors produce the same tristimulus
values, they are visually indistinguishable. A consequence of of this theory is that it is
possible to match all of the colors in the visible spectrum by appropriate mixing of three
primary colors. In other words, any color can be created by combining red, green, and blue
in varying proportions. This leads to the development of the RGB color model.

The RGB (short for red, green, blue) color model decomposes a color into three com-
ponents, Red (R), Green (G), and Blue (B); we can represent any color by three
componentsR,G,B just like the case that a spatial vector is specified by three components
x, y, z. If the color components R,G and B are confined to values between 0 and 1, all

Chapter 3 Imaging Basics 5

definable colors lie in a unit cube as shown in Figure 3-4. This color space is most natural
for representing computer images, in which a color specification such as (0.1, 0.8, 0.23)
can be directly translated into three positive integer values, each of which is represented by
one byte.

Red

Magenta

Blue Cyan

White

Y ellow

GreenBlack

[1, 0, 0]

[0, 0, 1]

[0, 1, 0]

Figure 3-4 RGB Color Cube

In this model, we express a color C in the vector form,

C =

 R
G
B

 0 ≤ R,G,B ≤ 1 (3.2)

In some other notations, the authors like to consider R, G, and B as three unit vectors like
the three spatial unit vectors i, j, and k. Just as a spatial vector V can be expressed as
v = xi + yj + zk, any color is expressed as C = (rR + gG + bB), and the red, green,
blue intensities are specified by the values of r, g, and b respectively. In our notation here,
R, G, and B represent the intensity values of the color components.

Suppose we have two colors C1 and C2 given by

C1 =

 R1

G1

B1

 , C2 =

 R2

G2

B2


Does it make sense to add these two colors to produce a new color C? For instance, con-
sider

6 Color Spaces

C = C1 + C2 =

 R1 +R2

G1 +G2

B1 +B2


You may immediately notice that the sum of two components may give a value larger than
1 which lies outside the color cube and thus does not represent any color. Just like adding
two points in space is illegitimate, we cannot arbitrarily combine two colors. A linear com-
bination of colors makes sense only if the sum of the coefficients is equal to 1. Therefore,
we can have

C = α1C1 + α2C2 (3.3)

when

0 ≤ α1, α2 and α1 + α2 = 1

In this way, we can guarantee that the resulted components will always lie within the color
cube as each value will never exceed one. For example,

R = α1R1 + α2R2 ≤ α1 × 1 + α2 × 1 = 1

which implies

R ≤ 1

The linear combination of colors described by Equation (3.3) is called color blending.

3.2.2 YUV Color Model

While the RGB color model is well-suited for displaying color images on a computer
screen, it is not an effective model for image processing or video compression. This is
because the human visual system (HVS) is more sensitive to luminance (brightness)
than to colors. Therefore, it is more effective to represent a color image by separating the
luminance from the color information and representing luma with a higher resolution than
color.

The YUV color model, defined in the TV standards, is an efficient way of representing
color images by separating brightness from color values. Historically, YUV color space
was developed to provide compatibility between color and black /white analog television
systems; it is not defined precisely in the technical and scientific literature. In this model,
Y is the luminance (luma) component, and U and V are the color differences known as
chrominance or chroma, which is defined as the difference between a color and a reference
white at the same luminance. The conversion from RGB to YUV is given by the following
formulas:

Y = krR+ kgG+ kbB
U = B − Y
V = R− Y

(3.4)

Chapter 3 Imaging Basics 7

with

0 ≤ kr, kb, kg

kr + kb + kg = 1 (3.5)

Note that equations (3.4) and (3.5) imply that 0 ≤ Y ≤ 1 if the R,G,B components lie
within the unit color cube. However, U and V can be negative. Typically,

kr = 0.299, kg = 0.587, kb = 0.114 (3.6)

which are values used in some TV standards. For convenience, in the forthcoming discus-
sions, we always assume that 0 ≤ R,G,B ≤ 1 unless otherwise stated.

The complete description of an image is specified by Y (the luminance component)
and the two color differences (chrominance) U and V . If the image is black-and-white,
U = V = 0. Note that we do not need another difference (G − Y) for the green
component because that would be redundant. We can consider (3.4) as three equations
with three unknowns, R,G,B. We can always solve for the three unknowns and recover
R,G,B. A fourth equation is not necessary.

It seems that there is no advantage of using YUV over RGB to represent an image
as both system requires three components to specify an image sample. However, as we
mentioned earlier, human eyes are less sensitive to color than to luminance. Therefore, we
can represent the U and V components with a lower resolution than Y and the reduction of
the amount of data to represent chrominance components will not have an obvious effect
on visual quality. Representing chroma with less number of bits than luma is a simple but
effective way of compressing an image.

3.2.3 YCbCr Color Model

The YCbCr color model defined in the standards of ITU (International Telecommunication
Union) is closely related to YUV but with the chrominace components scaled and shifted
to ensure that they lie within the range 0 and 1. It is sometimes abbreviated to YCC. It is
also used in the JPEG and MPEG standards. In this model, an image sample is specified
by a luminance (Y) component and two chrominance components (Cb, and Cr). The
following equations convert an RGB image to one in YCbCr space.

Y = krR+ kgG+ kbB

Cb =
B − Y

2(1− kb)
+ 0.5

Cr =
(R− Y)
2(1− kr)

+ 0.5

kr + kb + kg = 1

(3.7)

An image may be captured in the RGB format and then converted to YCbCr to reduce
storage or transmission requirements. Before displaying the image, it is usually necessary
to convert the image back to RGB. The conversion from YCbCr to RGB can be done by
solving for R,G,B in the equations of (3.7). The equations for converting from YCbCr to

8 Color Spaces

RGB are shown below:

R = Y + (2Cr − 1)(1− kr)

B = Y + (2Cb − 1)(1− kb)

G =
Y − krR− kbB

kg

= Y − kr(2Cr − 1)(1− kr) + kb(2Cb − 1)(1− kb)
kg

(3.8)

If we use the ITU standard values kb = 0.114, kr = 0.299, kg = 1− kb − kr = 0.587 for
(3.7) and (3.8), we will obtain the following commonly used conversion equations.

Y = 0.299R+ 0.587G+ 0.114B
Cb = 0.564(B − Y) + 0.5
Cr = 0.713(R− Y) + 0.5

R = Y + 1.402Cr − 0.701
G = Y − 0.714Cr − 0.344Cb + 0.529
B = Y + 1.772Cb − 0.886

(3.9)

In equations (3.7), it is obvious that 0 ≤ Y ≤ 1. It turns out that the chrominance compo-
nents Cb and Cr defined in (3.7) also always lie within the range [0, 1]. We prove this for
the case of Cb. From (3.7), we have

Cb =
B − Y

2(1− kb)
+

1
2

=
B − krR− kgG− kbB + 1− kb

2(1− kb)

=
B

2
+
−krR− kgG+ 1− kb

2(1− kb)

≥ B

2
+
−kr × 1− kg × 1 + 1− kb

2(1− kb)

=
B

2
≥ 0

Thus

Cb ≥ 0 (3.10)

Chapter 3 Imaging Basics 9

Also,

Cb =
B − Y

2(1− kb)
+

1
2

=
B − krR− kgG− kbB

2(1− kb)
+

1
2

≤ B − kbB

2(1− kb)
+

1
2

=
B

2
+

1
2

≤ 1
2

+
1
2

= 1

Thus

Cb ≤ 1 (3.11)

Combining (3.10) and (3.11), we have

0 ≤ Cb ≤ 1 (3.12)

Similarly

0 ≤ Cr ≤ 1 (3.13)

In summary, we have the following situation.

If 0 ≤ R,G,B ≤ 1

then 0 ≤ Y,Cb, Cr ≤ 1
(3.14)

Note that the converse is not true. That is, if 0 ≤ Y,Cb, Cr ≤ 1, it does not imply
0 ≤ R,G,B ≤ 1. A knowledge of this helps us in the implementations of the conversion
from RGB to YCbCr and vice versa. We mentioned earlier that the eye can only resolve
about 200 different intensity levels of each of the RGB components. Therefore, we can
quantize all the RGB components in the interval [0,1] to 256 values, from 0 to 255, which
can be represented by one byte of storage without any loss of visual quality. In other words,
one byte (or an 8-bit unsigned integer) is enough to represent all the values of each RGB
component. When we convert from RGB to YCbCr, it only requires one 8-bit unsigned
integer to represent each YCbCr component. This implicitly implies that all conversions
can be done efficiently in integer arithmetic that we shall discuss below.

3.3 Conversions between RGB and YCbCr

It is straightforward to write a java program to convert RGB to YCbCr or from YCbCr
to RGB. We discussed in the previous section that the implementation can be effectively
done in integer arithmetic. However, for clarity of presentation, we shall first discuss a

10 Conversions between RGB and YCbCr

floating point implementation. The java programs presented in this book are mainly for
illustration of concepts. In most cases, error checking is omitted and some variable values
are hard-coded.

3.3.1 Floating Point Implementation

The program listed below shows the conversion between RGB and YCbCr using ITU stan-
dard coefficients. It is a direct implementation of equations (3.9). The R, G, and B values,
which must lie between [0,1] are hard-coded and converted to Y, Cb, and Cr, which are
then converted back to R, G, and B.

Program Listing 3-1
/* Rgbyccf.java

* Program to demonstrate the conversions between RGB and YCbCr

* using ITU standard coefficients.

* Floating point arithmetic is used.

* Compile: $javac rgbyccf.java

* Execute: $java regyccf

*/

import java.io.*;

class Rgbyccf {
public static void main(String[] args) {

//0 <= R, G, B <= 1, sample values
double R = 0.3, G = 0.7, B = 0.2, Y, Cb, Cr;
System.out.printf("\nOriginal R, G, B:\t%f, %f, %f", R, G, B);

Y = 0.299 * R + 0.587 * G + 0.114 * B;
Cb = 0.564 * (B - Y) + 0.5;
Cr = 0.713 * (R - Y) + 0.5;
System.out.printf("\nConverted Y, Cb, Cr:\t%f, %f, %f",Y,Cb,Cr);

//recovering R, G, B
R = Y + 1.402 * Cr - 0.701;
G = Y - 0.714 * Cr - 0.344 * Cb + 0.529;
B = Y + 1.772 * Cb - 0.886;
System.out.printf("\nRecovered R, G, B:\t%f, %f, %f\n\n",R,G,B);

}
}

The program generates the following outputs:

Original R, G, B: 0.300000, 0.700000, 0.200000
Converted Y, Cb, Cr: 0.523400, 0.317602, 0.340716
Recovered R, G, B: 0.300084, 0.699874, 0.200191

The recovered R, G, and B values differ slightly from the original ones due to rounding
errors in computing and the representation of numbers in binary form.

Chapter 3 Imaging Basics 11

3.3.2 Integer Implementation

The above program illustrates the conversion between RGB and YCbCr using floating-
point calculations. However, such an implementation is not practical. Not only that round-
ing errors are introduced in the computations, floating-point arithmetic is very slow. When
compressing an image, we need to apply the conversion to every pixel. Switching to
integer-arithmetic in calculations can easily shorten the computing time by a factor of two
to three. In RGB-YCbCr conversion, using integer-arithmetic is quite simple because we
can always approximate a real number as a fraction between two integers. For example,
the coefficients for calculating Y from RGB can be expressed as:

0.299 = 19595/216

0.587 = 38470/216

0.114 = 7471/216

(3.15)

The integer-arithmetic expression for Y can be obtained by multiplying the equation

Y = 0.299R+ 0.587G+ 0.114B

by 216, which becomes

216Y = 19595R+ 38470G+ 7471B (3.16)

At the same time, we quantize the R, G, and B values from [0, 1] to 0, 1, ..., 255 which
can be done by multiplying the floating-point values by 255. We also need to quantize the
shifting constants 0.5, 0.701, 0.529, and 0.886 of (3.9) using the same rule by multiplying
them by 255, which will become

0.5× 255 = 128
0.701× 255 = 179
0.529× 255 = 135
0.886× 255 = 226

(3.17)

Actually, representing a component of RGB with integer values 0 to 255 is the natural way
of a modern computer handling color data. Each pixel has three components (R, G, and B
) and each component value is saved as an 8-bit unsigned number.

As shown in (3.9), in floating-point representation, the Cb component is given by

Cb = 0.564(B − Y) + 0.5

After quantization, it becomes

Cb = 0.564(B − Y) + 128 (3.18)

Multiplying (3.18) by 216, we obtain

216Cb = 36962(B − Y) + 128× 216 (3.19)

The corresponding equation for Cr is:

216Cr = 46727(R− Y) + 128× 216 (3.20)

12 Conversions between RGB and YCbCr

As R, G, and B have become integers, we can carry out the calculations using integer
multiplications and then divide the result by 216. In binary calculations, dividing a value
by 216 is the same as shifting the value right by 16. Therefore, from (3.16), (3.19) and
(3.20), the calculations of Y and Cb using integer-arithmetic can be carried out using the
following piece of java code.

Y = (19595 ∗R+ 38470 ∗G+ 7471 ∗B) >> 16;
Cb = (36962 ∗ (B − Y) >> 16) + 128;
Cr = (46727 ∗ (R− Y) >> 16) + 128;

(3.21)

One should note that the sum of the coefficients in calculating Y is 216 (i.e. 19595 +
38470 + 7471 = 65536 = 216), corresponding to the requirement, kr + kg + kb = 1 in
the floating-point representation.

The constraints of (3.14) and the requirement of 0 ≤ R,G,B ≤ 255 implies that in our
integer representation,

0 ≤ Y ≤ 255
0 ≤ Cb ≤ 255
0 ≤ Cr ≤ 255

(3.22)

In (3.9) the R component is obtained from Y and Cr:

R = Y + 1.402Cr − 0.701

In integer-arithmetic, this becomes

216R = 216Y + 91881Cr − 216 × 179 (3.23)

The value of R is obtained by dividing (3.23) by 216 as shown below in java code:

R = (Y + 91881 ∗ Cr >> 16)− 179; (3.24)

We can obtain similar equations for G and B. Combining all these, equations of (3.9) when
expressed in integer-arithmetic and in java code will take the following form:

Y = (19595 ∗R+ 38470 ∗G+ 7471 ∗B) >> 16;
Cb = (36962 ∗ (B − Y) >> 16) + 128;
Cr = (46727 ∗ (R− Y) >> 16) + 128;

R = Y + (91881 ∗ Cr >> 16)− 179;
G = Y − ((46793 ∗ Cr + 22544 ∗ Cb) >> 16) + 135;
B = Y + (116129 ∗ Cb >> 16)− 226;

(3.25)

In (3.25), it is obvious that a 32-bit integer is large enough to hold any intermediate calcu-
lations. Program Listing 3-2 below shows its implementation. The program generates the
outputs shown below.

Chapter 3 Imaging Basics 13

Program Listing 3-2
/* Rgbycci.java

* Simple program to demonstrate conversion from RGB to YCbCr and vice

* versa using ITU-R recommendation BT.601, and integer-arithmetic.

* Since Java does not have data type "unsigned char", we use "int".

* Compile: $javac rgbycci.java

* Execute: $java regycci

*/
import java.io.*;

/* Note:

* 216 = 65536

* kr = 0.299 = 19595 / 216

* kg = 0.587 = 38470 / 216

* Kb = 0.114 = 7471 / 216

* 0.5 = 128 / 255

* 0.564 = 36962 / 216

* 0.713 = 46727 / 216

* 1.402 = 91881 / 216

* 0.701 = 135 / 255

* 0.714 = 46793 / 216

* 0.344 = 22544 / 216

* 0.529 = 34668 / 216

* 1.772 = 116129 / 216

* 0.886 = 226 / 255

*/

class Rgbycci {
public static void main(String[] args) {

int R, G, B; //RGB components
int Y, Cb, Cr; //YCbCr components
//some sample values for demo
R = 252; G = 120; B = 3;

//convert from RGB to YCbcr
Y = (19595 * R + 38470 * G + 7471 * B) >> 16;
Cb = (36962 * (B - Y) >> 16) + 128;
Cr = (46727 * (R - Y) >> 16) + 128;
System.out.printf("\nOriginal RGB & corresponding YCbCr values:");
System.out.printf("\n\tR = %6d, G = %6d, B = %6d", R, G, B);
System.out.printf("\n\tY = %6d, Cb = %6d, Cr = %6d", Y, Cb, Cr);

//convert from YCbCr to RGB
R = Y + (91881 * Cr >> 16) - 179;
G = Y -((22544 * Cb + 46793 * Cr) >> 16) + 135;
B = Y + (116129 * Cb >> 16) - 226;
System.out.printf("\n\nRecovered RGB values:");
System.out.printf("\n\tR = %6d, G = %6d, B = %6d\n\n", R, G, B);

}
}

Outputs of Program Listing 3-2
Original RGB & corresponding YCbCr values:

R = 252, G = 120, B = 3
Y = 146, Cb = 47, Cr = 203

Recovered RGB values:
R = 251, G = 120, B = 3

14 YCbCr Sampling Formats

Again, some precision has been lost when we recover R, G, and B from the converted Y,
Cb, and Cr values. This is due to the right shifts in the calculations, which are essentially
truncate operations. Because of rounding or truncating errors, the recovered R, G, and B
values may not lie within the range [0, 255]. To remedy this, we can have a function that
check the recovered value; if the value is smaller than 0, we set it to 0 and if it is larger than
255, we set it to 255. For example,

if (R < 0)
R = 0;

else if (R > 255)
R = 255;

However, this check is not necessary when we convert from RGB to YCbCr. This is because
from (3.14), we know that we always have 0 ≤ Y,Cb, Cr ≤ 1. For any positive real
number, a and 0 ≤ a ≤ 1 and any positive integer I ,

0 ≤ Round(aI) ≤ Round(I) = I and similarly 0 ≤ Truncate(aI) ≤ I

This implies that after quantization and rounding, we always have 0 ≤ Y,Cb, Cr ≤ 255.

3.4 YCbCr Sampling Formats

We mentioned earlier that we may represent the Cr and Cb components with less bits
than Y without much effect on visual quality as our eyes are less sensitive to color than to
luminance. This is a simple way of compressing an image. In general, people consider four
adjacent pixels of an image at a time and this leads to the standards 4:4:4, 4:2:2, and 4:2:0
sampling formats, which are supported by video standards MPEG-4 and H.264.

4:4:4 YCbCr Sampling Formats

4:4:4 YCbCr sampling means that for every four luma samples there are fourCb and four
Cr samples and hence the three components, Y , Cb, and Cr have the same resolution. The
numbers indicate the relative sampling rate of each component in the horizontal direction.
So at every pixel position in the horizontal direction, a sample of each component of (Y ,
Cb, Cr) exists. The 4:4:4 YCbCr format requires as many bits as the RGB format and thus
preserves the full fidelity of the chrominance components.

4:2:2 YCbCr Sampling Formats (High Quality Color Reproduction)

4:2:2 YCbCr sampling means that the chrominance components have the same vertical
resolution as the luma but half the horizontal resolution. Therefore, for every four luma
samples there are two Cb and two Cr samples. Sometimes this format is referred to as
YUY2.

Chapter 3 Imaging Basics 15

4:2:0 YCbCr Sampling Formats (Digital Television and DVD Storage)

4:2:0 YCbCr sampling means that each of the chrominance components has half the hor-
izontal and vertical resolution of the luma component. That is, for every four luma samples
(Y) there are one Cb and one Cr samples. It is sometimes known as YV12 and is widely
used in video conferencing, digital television and digital versatile disk (DVD) storage. The
term “4:2:0” is rather confusing as the numbers do not reflect relative resolutions between
the components and apparently have been chosen due to historical reasons to distinguish it
from the 4:4:4 and 4:2:2 formats.

Figure 3-5 shows the sampling format of 4:2:0; progressive sampling is used.

Cr Sample
...
...
...
...
...
...
...
..

Y Sample

Cb Sample

Figure 3-5 4:2:0 Sampling Patterns

Example 3-1
Image resolution: 1024 x 768 pixels

4:4:4 Y ,Cb, Cr resolution: 1024 x 768 samples
Total number of bits: 1024x768x8x3 = 18874368 bits

4:2:0 Y resolution: 1024 x 768 samples
4:2:0 Cb, Cr resolution: 512x384 samples (8 bits for samples)
Total number of bits: (1024 x 768 x 8) + (512 x 384 x 8 x 2)

= 9437184 bits

The 4:2:0 format requires half as many bits as the 4:4:4
format and the RGB format.

3.5 Measuring Video Quality

It is important to have some agreed upon methods to measure the quality of video so that
we can evaluate and compare various video images presented to the viewer. However, this
is a difficult and often an imprecise process and inherently subjective as there are so many
factors that can influence the measurement. In general, there are two classes of methods

16 Measuring Video Quality

that people use to measure video quality: subjective tests, where human subjects are asked
to assess or rank the images, and objective tests, which compute the distortions between
the original and processed video sequences.

3.5.1 Subjective Quality Measurement

Subjective quality measurement asks human subjects to rank the quality of a video based
on their own perception and understanding of quality. For example, a viewer can be asked
to rate the quality on a 5-point scale, with quality ratings ranging from bad to excellent as
shwon in Figure 3-6.

Bad: Very Annoying

Poor: Annoying

Fair: Slightly Annoying

Good: Perceptible

Excellent: Imperceptible

0

20

40

60

80

100

Figure 3-6 Example of video quality assessment scale used in subjective tests

Very often, a viewer’s perception on a video is affected by many factors such as the
viewing environment, the lighting conditions, display size and resolution, the viewing dis-
tance, the state of mind of the viewer, whether the material is interesting to the viewer
and how the viewer interacts with the visual scene. It is not uncommon that the same
viewer who observes the same video at different times under different environments may
give significantly different evaluations on the quality of the video. For example, it has
been shown that subjective quality ratings of the same video sequence are usually higher
when accompanied by good quality sound, which may lower the evaluators’ ability to de-
tect impairments. Also, viewers tend to give higher ratings to images with higher contrast
or more colorful scenes even though objective testing show that they have larger distortions
in comparison to the originals.

Nevertheless, subjective quality assessment still remains the most reliable methods of
measuring video quality. It is also the most efficient method to test the performance of
components, like video codecs, human vision models and objective quality assessment
metrics.

Chapter 3 Imaging Basics 17

3.5.1.1 ITUR BT.500

The ITU-R Recommendation BT-500-11 formalizes video subjective tests by recommend-
ing various experiment parameters such as viewing distance, room lighting, display fea-
tures, selection of subjects and test material, assessment and data analysis methods. There
are three most commonly used procedures from the standard: Double Stimulus Continuous
Quality Scale (DSCQS), Double Stimulus Impairment Scale (DSIS) and Single Stimulus
Continuous Quality Evaluation (SSCQE) .

Double Stimulus Continuous Quality Scale (DSCQS)

In the DSCQS method, a viewer is presented with a pair of images or short sequences X and
Y, one after the other. The viewer is asked to rank X and Y by marking on a continuous line
with five intervals ranging from ‘Bad’ to ‘Excellent’, which has an equivalent numerical
scale from 0 to 100, like the one shown in Figure 3-6. The reference and test sequences are
shown to the viewer twice in alternating fashion, the order chosen in random. The accessor
does not know in advance which is the reference sequence and which is the test sequence.
Figure 3-7 shows an experimental set-up that can be used for testing a video coder-decoder
(CODEC); it is randomly assigned which sequence is X and which sequence is Y.

Source Video
Sequence

Encoder Decoder

Display

X or Y

X or Y

Figure 3-7 DSCQS Testing System

Double Stimulus Impairment Scale (DSIS)

In the DSIS method the reference sequence is always presented before the test sequence,
and it is not necessary to show the pair twice. Viewers are asked to rate the sequences on
a 5-point scale, ranging from “very annoying” to “imperceptible” like the one shown in
Figure 3-6. This method is more effective for evaluating clearly visible impairments, such
as noticeable artifacts caused by encoding or transmission.

Both the DSCQS and DSIS methods use short sequences (8 - 10 sec) in the test and
this becomes a problem when we want to evaluate video sequences with long duration and
quality varies significantly over time like those distributed via the Internet.

Single Stimulus Continuous Quality Evaluation (SSCQE)

SSCQE is designed to evaluate video sequences with significant temporal variations of
quality. In this method, longer sequences (20 - 30 minutes) are presented to the view-
ers without any reference sequence. The accessors evaluate instantaneously the perceived

18 Measuring Video Quality

quality by continuously adjusting a side slider on the DSCQS scale, ranging from “bad”
to “excellent”. The slider value is periodically sampled every 1 - 2 seconds. Using this
method, differences between alternative transmission configurations can be analyzed in a
more informative manner. However, as the accessor has to adjust the slider from time to
time, she may be distracted and thus the rating may be compromised. Also, because of
the ‘recency or memory effect’, it is quite difficult for the accessor to consistently detect
momentary changes in quality, leading to stability and reliability problems of the results.

3.5.2 Objective Quality Measurement

Though subjective measurements are the most reliable method to evaluate video qualities,
they are complex and expensive as human subjects are required to do the evaluation. It is a
lot more convenient and cost-effective to automatically measure quality using an algorithm.
Indeed, video processing system developers rely heavily on objective (algorithmic) mea-
surement to access video qualities. The simplest and most widely used form of measuring
the quality is Peak Signal to Noise Ratio (PSNR) which calculates the distortion at the
pixel level. Peak Signal to Noise Ratio (PSNR) measures the mean squared error (MSE
) between the reference and test sequences on a logarithmic scale, relative to the square of
the highest possible signal value in the image, (2n − 1)2, where n is the number of bits per
image sample. It is described by Equation (3.26):

PSNRdb = 10log10
(2n − 1)2

MSE
(3.26)

The mean squared error, MSE of two M × N images X and Y where one of the images
is considered to be a noisy approximation of the other with sample values Xij and Yij re-
spectively can be calculated using the following equation:

MSE =
1

M ×N

M−1∑
i=0

N−1∑
j=0

(Xij − Yij)2 (3.27)

Though PSNR is a straightforward metric to calculate, it cannot describe distortions per-
ceived by a complex and multi-dimensional system like the human visual system (HVS),
and thus fails to give good evaluations in many cases. For example, a viewer may be inter-
ested in an object of an image but not its background. If the background is largely distorted,
the viewer would still rate that the image is of high quality; however, PSNR measure would
indicate that the image is of poor quality. The limitations of this metric have led to recent
research in image processing that has focused on developing metrics that resembles the re-
sponse of real human viewers. Many approaches have been proposed but none of them can
be accepted as a standard to be used as an alternative to subjective evaluation. The search
of a good acceptable objective test for images will remain a research topic for some time.

Chapter 3 Imaging Basics 19

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth.

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

An Introduction to 3D Computer Graph-
ics, Stereoscopic Image, and Anima-
tion in OpenGL and C/C++

by Fore June

November 2011
ISBN-13: 978-1466488359

	Chapter 3 Imaging Basics
	3.1 Sampling and Quantization
	3.1.1 Spatial Sampling
	3.1.2 Temporal Sampling
	3.1.3 Quantization

	3.2 Color Spaces
	3.2.1 RGB Color Model
	3.2.2 YUV Color Model
	3.2.3 YCbCr Color Model

	3.3 Conversions between RGB and YCbCr
	3.3.1 Floating Point Implementation
	3.3.2 Integer Implementation

	3.4 YCbCr Sampling Formats
	4:4:4 YCbCr Sampling Formats
	4:2:2 YCbCr Sampling Formats (High Quality Color Reproduction)
	4:2:0 YCbCr Sampling Formats (Digital Television and DVD Storage)

	3.5 Measuring Video Quality
	3.5.1 Subjective Quality Measurement
	3.5.1.1 ITUR BT.500
	3.5.2 Objective Quality Measurement

