
1

An Introduction to Digital Video Data Compression in Java

Fore June

Chapter 5 Macroblocks

5.1 Introduction

In general, a PC image or a frame with moderate size consists of many pixels and requires
a large amount of storage space and computing power to process it. For example, an image
of size 240 x 240 has 57600 pixels and requires 3

2 × 57600 = 86, 400 bytes of storage
space if 4:2:0 format is used. It is difficult and inconvenient to process all of these data
simultaneously. In order to make things more manageable, an image is decomposed into
macroblocks. A macroblock is a 16 x 16 pixel-region, which is the basic unit for process-
ing a frame and is used in video compression standards like MPEG, H.261, H.263, and
H.264. A macroblock has a total of 16× 16 = 256 pixels.

In our coding, we shall also process an image in the units of macroblocks. For simplicity
and the convenience of discussion, we assume that each of our frames consists of an inte-
gral number of macroblocks. That is, both the width and height of an image are divisible
by 16. The Common Intermediate Format (CIF) discussed in Chapter 4 also has a resolu-
tion of 352 × 288 that corresponds to 22 × 18 macroblocks. In addition, we shall use the
4:2:0 YCbCr format; a macroblock then consists of a 16× 16 Y sample block, an 8× 8 Cb
sample block and an 8× 8 Cr sample block. To better organize the data, we further divide
the 16× 16 Y sample block into four 8× 8 sample blocks. Therefore, a 4:2:0 macroblock
has a total of six 8× 8 sample blocks; we label these blocks from 0 to 5 as shown in Figure
5-1:

16

16

16× 16
Pixels

RGB

16

16

2

0 1

3

Y

8

8

4

Cb

8

8

5

Cr

Figure 5-1. Macroblock of 4:2:0

5.2 Implementing RGB and 4:2:0 YCbCr Transformation
for Video Frames

When implementing the conversion of RGB to YCbCr, we process the data in units of
macroblocks. A macroblock has four 8×8 Y sample blocks, one 8×8 Cb sample block and
one 8×8 Cr sample block. We assume that a frame has an integral number of macroblocks.
In the 4:2:0 YCbCr format, for each RGB pixel, we make a conversion for Y but we only
make a conversion for Cb and Cr for every four RGB pixels (see Figure 3-5). Each
group of four pixels is formed by grouping 4 neighbouring pixels. For simplicity, when
calculating the Cb, and Cr components, we simply use the upper left pixel of the four and

1

2 Implementing RGB and 4:2:0 YCbCr Transformation

ignore the other three. (Alternatively, one can take the average value of the four RGB pixel
values when calculating the Cb and Cr values.)

Before discussing the implementation of RGB-YCbCr transformations, we would like
to highlight some programming features of java that some readers may overlook or misun-
destand.

Some Notes on Java Programming

Firstly, java always passes parameters by values; it does not support pass-by-reference.
This means that we cannot change the value of a variable by passing it as an argument to a
function.

Secondly, a java object variable is analogous to an object pointer in C++. For example,
suppose we have defined a Pixel class:

class Pixel {
int red;
int green;
int blue;

};

The java code,

Pixel aPixel = new Pixel(); //java

is the same as the C++ code,

Pixel *aPixel = new Pixel(); //C++

Basically, we can always regard a java object variable as a pointer (address) pointing to
the object. Though we cannot change the value of a function parameter, we can change the
state of the object that a function parameter points at. For example, the following function
changes the value of red:

void setPixel (Pixel p) {
p.red = 100;

}

The function sets the value of red of the Pixel object pointed by p to 100. On the other
hand, the following piece of code does not make any change to the object.

void setPixel (Pixel p) {
p = new Pixel();
p.red = 100;

}

This is because in the function, p is assigned a new value, pointing to a local object. This
new local pointer value will not be passed back to the calling function.

In general, most parts of a java program written for manipulating objects involve assign-
ing pointer values rather than object values. For example, consider a statement such as the
following:

x = objectVariable;

Chapter 5 Macroblocks 3

In C++, this means copying the object denoted by objectVariable to variable x. They then
represent two different objects. Changing x will not affect objectVariable. However, in
java, no object-copying occurs; the statement simply means assigning the pointer object-
Variable to x. When you change the object referenced by x, you also change the object
referenced by objectVariable as both of them point to the same object.

Thirdly, unlike C++, when we declare an array of objects, java does not create the objects
automatically. Rather, it defines an array of pointers initialized to NULL. For example,
if we want to create an array of Pixel objects, we must use the new operator to do the
instantiation like the following:

class PixelArray {
Pixel [] pa = new Pixel[16];//create an array of NULL pointers
PixelArray(){ //constructor

for (int i = 0; i < 16; ++i) //instantiation
pa[i] = new Pixel();

}
}

Fourthly, the round() function of the java Math library does not work properly like that
of C++. Java rounds 0.5 to 1 but it rounds −0.5 to 0 rather than −1. That is, Math.round
(0.5) yields 1 but Math.round (-0.5) yields 0. This asymmetry in handling positive and
negative numbers may cause problems in programming in the future. Readers may need to
add some extra coding to correct this defect in their programs.

Finally, we would like to explain briefly the difference between a class and an object.
We believe most readers understand the difference but there may be a few who come from
a different programming background and may not be familiar with terminologies of object-
oriented programming (OOP). In short, a class refers to the code of a structure that performs
certain tasks. A class contains both data (referred to as attributes), and functions (referred
to as methods). An object is an instantiation of a class and is instantiated by the new
keyword. This is in analogy of building a house. The blueprint that specifies the details of
building a house corresponds to a class. A house built based on the blueprint corresponds
to an object. Building a house consumes resources such as glass, wood and stone. In the
same way, creating an object requires resources such as memory and files. We can build
more than one house using the same blueprint. In a similar sense, we can create more than
one object based on the same class. When we use a class name in a description, we may
refer to either the class or an object depending on the context of description. Also, java
functions and methods mean the same thing in this book.

Implementation

For convenience of programming, we define four classes: the object of class RGB holds
the RGB values of a pixel, YCbCr holds the YCbCr values of a pixel, and RGB MACRO
and YCbCr MACRO hold the RGB and YCbCr sample values of a macroblock (16 ×
16 pixels) of Figure 5-1 respectively. We put all these definitions in the file “com-
mon.java”, which is listed in Figure 5-2 below.

4 Implementing RGB and 4:2:0 YCbCr Transformation

//common.java
class RGB { //defines an RGB pixel
int R; //0 - 255
int G; //0 - 255
int B; //0 - 255

}
class YCbCr {

int Y; //0 - 255
int Cb; //0 - 255
int Cr; //0 - 255

}
class RGB_MACRO { //16x16 RGB block

RGB [] rgb;
RGB_MACRO(){ //constructor
rgb = new RGB[256];
//allocate memory
for (int i = 0; i < 256; ++i)
rgb[i] = new RGB();

}
}
class YCbCr_MACRO { //4:2:0 YCbCr Macroblock

int [] Y = new int[256]; //16x16 (four 8x8 samples)
int [] Cb = new int[64]; //8x8
int [] Cr = new int[64]; //8x8

}
class RGBImage {

int width; //image width
int height; //image height
RGB [] ibuf; //image data buffer
//constructor
RGBImage (int w, int h) {
width = w;
height = h;
ibuf = new RGB[width*height];//image data buffer
for (int i = 0; i < width * height; ++i)
ibuf[i] = new RGB();

}
}

Figure 5-2 Public classes for Processing Macro Blocks

We have learned in Chapter 3 how to convert an RGB pixel to YCbCr values using integer
arithmetic. We define a function named rgb2ycbcr (RGB a, YCbCr b) to convert an RGB
pixel a to a YCbCr pixel b and a function named rgb2y(RGB a) to convert an RGB pixel
a to a Y component and returns its value as an integer. Now, we need a function to convert
an entire RGB macroblock to a 4:2:0 YCbCr macroblock, which consists of four 8 × 8 Y
sample blocks, one 8× 8 Cb sample block and one 8× 8 Cr sample block. The following
function macroblock2ycbcr(), listed in Figure 5-3 does the job; the input of it is a java
object variable (pointer) pointing to an RGB MACRO object containing the data of a
16× 16 RGB macroblock; the function converts the RGB values to YCbCr values and put
the data in a YCbCr MACRO object pointed by the object variable of the second input
parameter of the function and thus the converted values will be sent back to the calling
function via this parameter.

Chapter 5 Macroblocks 5

/*
Convert an RGB macro block (16x16) to
4:2:0 YCbCr sample blocks (six 8x8 blocks).

*/
void macroblock2ycbcr(RGB_MACRO rgb_macro,YCbCr_MACRO ycbcr_macro)
{

int i, j, k, r;
YCbCr ycc = new YCbCr();

r = k = 0;
for (i = 0; i < 16; ++i) {

for (j = 0; j < 16; ++j) {
//need one Cb, Cr for every 4 pixels
if ((i & 1) == 0 && (j & 1) == 0) {
//convert to Y and Cb, Cr values
rgb2ycbcr (rgb_macro.rgb[r], ycc);
ycbcr_macro.Y[r] = ycc.Y;
ycbcr_macro.Cb[k] = ycc.Cb;
ycbcr_macro.Cr[k] = ycc.Cr;
k++;

} else { //only need Y component for other 3 pixels
ycbcr_macro.Y[r] = rgb2y (rgb_macro.rgb[r]);

}
r++; //convert every pixel for Y

}
}

}

Figure 5-3 Function for converting an RGB macroblock to 4:2:0 YCbCr Sample Blocks

In Figure 5-3, the statement “if ((i & 1) == 0 && (j & 1) == 0) { ” is true only
when both i and j are even. This implies that it selects one pixel from a group of four
neighbouring pixels as shown in Figure 3-5, and makes a conversion to Y, Cb, Cr; it makes
a conversion of only the Y component for the other 3 pixels as we have considered the 4:2:0
YCbCr format. For example, the statement is true when

(i, j) = (0, 0), (0, 2), ..., (2, 0), (2, 2), ..., (14, 14).

We can similarly define a function, ycbcr2macroblock() to convert a YCbCr macroblock
to an RGB macroblock. The following program, RgbYcc.java of Listing 5-1 contains all
the functions we need to convert video frames from RGB to YCbCr and back. It can be
compiled with the command “javac RgbYcc.java”.

Program Listing 5-1 Conversions between RGB and YCbCr
——————————————————————————————————-

/*
RgbYcc.java
Class for converting RGB to YCbCr and vice versa.

*/

/*
Convert from RGB to YCbCr using ITU-R recommendation BT.601.

Y = 0.299R + 0.587G + 0.114B
Cb = 0.564(B - Y) + 0.5
Cr = 0.713(R - Y) + 0.5

Integer arithmetic is used to speed up calculations.
Note:

2ˆ16 = 65536

6 Implementing RGB and 4:2:0 YCbCr Transformation

kr = 0.299 = 19595 / 2ˆ16
kg = 0.587 = 38470 / 2ˆ16
Kb = 0.114 = 7471 / 2ˆ16
0.5 = 128 / 255
0.564 = 36962 / 2ˆ16
0.713 = 46727 / 2ˆ16
1.402 = 91881 / 2ˆ16
0.701 = 135 / 255
0.714 = 46793 / 2ˆ16
0.344 = 22544 / 2ˆ16
0.529 = 34668 / 2ˆ16
1.772 = 116129 / 2ˆ16
0.886 = 226 / 255

*/

import java.io.*;

class RgbYcc {
public void rgb2ycbcr(RGB rgb, YCbCr ycc)
{

//coefs summed to 65536 (1 << 16), so Y is always within [0, 255]
ycc.Y = (19595 * rgb.R + 38470 * rgb.G + 7471 * rgb.B) >> 16;
ycc.Cb = (36962 * (rgb.B - ycc.Y) >> 16) + 128 ;
ycc.Cr = (46727 * (rgb.R - ycc.Y) >> 16) + 128 ;

}

//just convert an RGB pixel to Y component
public int rgb2y(RGB rgb)
{

int y;

y = (19595 * rgb.R + 38470 * rgb.G + 7471 * rgb.B) >> 16;
return y;

}

//limit value to lie within [0,255]
public RGB chop (RGB rgb)
{

if (rgb.R < 0 || rgb.B < 0 || rgb.B < 0 ||
rgb.R > 255 || rgb.B > 255 || rgb.G > 255)

if (rgb.R < 0) rgb.R = 0;
else if (rgb.R > 255) rgb.R = 255;
if (rgb.G < 0) rgb.G = 0;
else if (rgb.G > 255) rgb.G = 255;
if (rgb.B < 0) rgb.B = 0;
else if (rgb.B > 255) rgb.B = 255;

return rgb;
}

/*
Convert from YCbCr to RGB domain. Using ITU-R standard:

R = Y + 1.402Cr - 0.701
G = Y - 0.714Cr - 0.344Cb + 0.529
B = Y + 1.772Cb - 0.886

Integer arithmetic is used to speed up calculations.

*/

public void ycbcr2rgb(YCbCr ycc, RGB rgb)
{

Chapter 5 Macroblocks 7

rgb.R = ycc.Y + (91881 * ycc.Cr >> 16) - 179;
rgb.G = ycc.Y -((22544 * ycc.Cb + 46793 * ycc.Cr) >> 16) + 135;
rgb.B = ycc.Y + (116129 * ycc.Cb >> 16) - 226;

rgb = chop (rgb); //enforce values to lie within [0,255]
}

/*
Convert an RGB macro block (16x16) to
4:2:0 YCbCr sample blocks (six 8x8 blocks).

*/

void macroblock2ycbcr (RGB_MACRO rgb_macro, YCbCr_MACRO ycbcr_macro)
{

int i, j, k, r;
YCbCr ycc = new YCbCr();

r = k = 0;
for (i = 0; i < 16; ++i) {

for (j = 0; j < 16; ++j) {
//need one Cb, Cr for every 4 pixels
if ((i & 1) == 0 && (j & 1) == 0) {

//convert to Y and Cb, Cr values
rgb2ycbcr (rgb_macro.rgb[r], ycc);
ycbcr_macro.Y[r] = ycc.Y;
ycbcr_macro.Cb[k] = ycc.Cb;
ycbcr_macro.Cr[k] = ycc.Cr;
k++;

} else { //only need the Y component for other 3 pixels
ycbcr_macro.Y[r] = rgb2y (rgb_macro.rgb[r]);

}
r++; //convert every pixel for Y

}
}

}

/*
Convert the six 8x8 YCbCr sample blocks to RGB macroblock (16x16).

*/
void ycbcr2macroblock(YCbCr_MACRO ycbcr_macro, RGB_MACRO rgb_macro)
{

int i, j, k, r;
YCbCr ycc = new YCbCr();

r = k = 0;
for (i = 0; i < 16; ++i) {

for (j = 0; j < 16; ++j) {
//one Cb, Cr has been saved for every 4 pixels
if ((i & 1) == 0 && (j & 1) == 0) {

ycc.Y = ycbcr_macro.Y[r];
ycc.Cb = ycbcr_macro.Cb[k];
ycc.Cr = ycbcr_macro.Cr[k];
k++;

} else {
ycc.Y = ycbcr_macro.Y[r];
ycc.Cb = ycbcr_macro.Cb[k];
ycc.Cr = ycbcr_macro.Cr[k];

}
ycbcr2rgb (ycc, rgb_macro.rgb[r]);
r++;

8 Implementing RGB and 4:2:0 YCbCr Transformation

}
}

}
}

After we have implemented the functions to convert an RGB macroblock to a YCbCr
macroblock and vice versa, we can utilize these functions to convert an image frame from
RGB to YCbCr and save the data. As 4:2:0 format is used, the saved YCbCr data are only
half as much as the original RGB data. In our discussions, the four Y sample blocks of a
YCbCr macroblock are stored in the linear array Y[256] (Figure 5-2). In some cases, it is
more convenient to separate the 256 Y samples into four sample blocks, each with size 64
(= 8×8). The relation between the indexes of the linear array and the four sample blocks,
labeled 0, 1, 2, and 3 is shown in Figure 5-4; the following piece of code shows how to
separate the data into four 8× 8 blocks:

int b, i, j, k, r;

//one macroblock has 256 Y samples
byte [] Yblock = new byte[256];

r = 0;
//save four 8x8 Y sample blocks
for (b = 0; b < 4; b++) {

if (b < 2)
k = 8 * b; //points to beginning of block

else
k = 128 + 8 * (b - 2); //points to beginning of block

for (i = 0; i < 8; i++) { //one sample-block
if (i > 0) k += 16; //advance k by 16 (one row)
for (j = 0; j < 8; j++) {
Yblock[r] = (byte) ycbcr_macro.Y[k+j];
r++;

}
}

}

The array Yblock saves the Y sample blocks in the order of block 0, 1, 2 and 3 as shown
in Figure 5-4. In the code, Yblock is a byte array, which prepares us to write the data
to a file conveniently. On the other hand, ycbcr macro.Y is a 32-bit integer array and we
know that Y is always positive and lies in the range [0, 255]. However, in java, a byte is
an 8-bit signed value. This means that any positive value larger than 127 and smaller than
256 will become a negative number when we convert it from an int to a byte. Will this
cause error in the program? The answer is no because in a modern computer, any number
is represented as a binary number. It is the way that we interpret a binary number that
gives us a signed or an unsigned value. For example, an int of value 255 is represented by
the 32-bit number 00000000000000000000000011111111. When we cast this to a byte,
we take the lower eight bits, 11111111. If we interpret 11111111 as a signed-number, we
obtain the value −1 but if we interpret it as an unsigned-number, we obtain the value 255.
Regardless of our interpretation, we are processing the binary number 11111111. So if
we save this binary number in a file and read it back, we always get back the same binary
number. Of course, we need to be careful in our coding so that we will not change the 8-bit

Chapter 5 Macroblocks 9

number 11111111 into the 32-bit binary number 11111111111111111111111111111111,
which also represents the value of −1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 23 24 31

112 119 120 127

128 135 136 143

240 247 248 255

0 1

2 3

Figure 5-4 Y Sample Block Indexes

Program Listing 5-2 below shows the program Encode.java that contains the complete
code of the class Encode that has functions to convert an RGB frame to YCbCr and to
save the converted data in a file. The class only has two member functions, namely,
save yccblocks() and encode(). The function save yccblock() saves one YCbCr block
in the specified file; the function encode() makes use of save yccblocks() and other func-
tions of RgbYcc to convert a frame of RGB data to YCbCr and save the converted data in
the file.

Program Listing 5-2 Encode Class
——————————————————————————————————-

/*
Encode.java
Contains functions that convert an RGB frame to YCbCr and save the
converted data.

*/

import java.io.*;

class Encode {
//save one YCbCr macroblock.
public void save_yccblocks(YCbCr_MACRO ycbcr_macro,DataOutputStream out)
{

10 Implementing RGB and 4:2:0 YCbCr Transformation

int b, i, j, k, r;

//one macroblock has 256 Y samples
byte [] Yblock = new byte[256];

r = 0;
//save four 8x8 Y sample blocks
for (b = 0; b < 4; b++) {

if (b < 2)
k = 8 * b; //points to beginning of block

else
k = 128 + 8 * (b - 2); //points to beginning of block

for (i = 0; i < 8; i++) { //one sample-block
if (i > 0) k += 16; //advance k by 16 (length of 1 row)
for (j = 0; j < 8; j++) {

Yblock[r] = (byte) ycbcr_macro.Y[k+j];
r++;

}
}

}

//save one 8x8 Cb block
byte [] Cb_block = new byte[64];
k = 0;
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {
Cb_block[k] = (byte) ycbcr_macro.Cb[k];
k++;

}
}

//save one 8x8 Cr block
byte [] Cr_block = new byte[64];
k = 0;
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {
Cr_block[k] = (byte) ycbcr_macro.Cr[k];
k++;

}
}

//save 4 Y sample blocks, one Cb block, one Cr block in file
try {

out.write (Yblock);
out.write (Cb_block);
out.write (Cr_block);

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
}

/*
Convert 1 frome of RGB to YCbCr and save the converted data.

*/
public void encode (RGBImage image, DataOutputStream out)
{

int row, col, i, j, k, r;
RGB_MACRO rgb_macro = new RGB_MACRO();
//macroblock for YCbCr samples

Chapter 5 Macroblocks 11

YCbCr_MACRO ycbcr_macro = new YCbCr_MACRO();
RgbYcc rgbycc = new RgbYcc ();

for (row = 0; row < image.height; row += 16) {
for (col = 0; col < image.width; col += 16) {

k = row * image.width + col;
r = 0;
for (i = 0; i < 16; ++i) {

for (j = 0; j < 16; ++j)
rgb_macro.rgb[r++] = image.ibuf[k++];

k += (image.width - 16); //next row within macroblock
}
//convert from RGB to YCbCr
rgbycc.macroblock2ycbcr(rgb_macro, ycbcr_macro);

//save one YCbCr macroblock
save_yccblocks(ycbcr_macro, out);

} //for col
} //for row

}
}

——————————————————————————————————-

Note that in Encode.java of Listing 5-2, the function save yccblocks() uses out.write()
to send 8-bit bytes to the file. In the decoding process, we will use something like in.read()
to read one 8-bit byte back but the byte read is returned as a 32-bit integer and thus the
value lies in the range [0, 255].

The corresponding code that converts a file of YCbCr data to RGB data is shown in
Decode.java of Listing 5-3.

Program Listing 5-3 Decode Class
——————————————————————————————————-

/*
Decode.java
Contains functions to read YCbCr data from a file and convert from YCbCr
to RGB.

*/
import java.io.*;

class Decode {
/*
Get YCbCr data from file pointed by in. Put the four 8x8 Y sample blocks,
one 8x8 Cb sample block and one 8x8 Cr sample block into a class object
of YCbCr_MACRO.
Return: number of bytes read from file.

*/
public int get_yccblocks(YCbCr_MACRO ycbcr_macro, DataInputStream in)
{

int r, row, col, i, j, k, n, b, c;

byte abyte;

n = 0;
//read data from file and put them in four 8x8 Y sample blocks
for (b = 0; b < 4; b++) {

if (b < 2)
k = 8 * b; //points to beginning of block

12 Implementing RGB and 4:2:0 YCbCr Transformation

else
k = 128 + 8 * (b - 2); //points to beginning of block

for (i = 0; i < 8; i++) { //one sample-block
if (i > 0) k += 16; //advance by 1 row of macroblock
for (j = 0; j < 8; j++){

try {
if ((c = in.read()) == -1) //read one byte
break;

ycbcr_macro.Y[k+j] = c;
} catch (IOException e) {

e.printStackTrace();
System.exit(0);

}
n++;

} //for j
} //for i

} //for b

//now do that for 8x8 Cb block
k = 0;
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {
try {

if ((c = in.read()) == -1) //read one byte
break;

ycbcr_macro.Cb[k++] = c;
} catch (IOException e) {

e.printStackTrace();
System.exit(0);

}
n++;

}
}

//now do that for 8x8 Cr block
k = 0;
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {
try {

if ((c = in.read()) == -1) //read one byte
break;

ycbcr_macro.Cr[k++] = c;
} catch (IOException e) {

e.printStackTrace();
System.exit(0);

}
n++;

}
}
return n; //number of bytes read

}

/* Read in YCbCr data from file.

* Convert a YCbCr frame to an RGB frame.

* Return RGB data via parameter image.

*/
public int decode_yccFrame (RGBImage image, DataInputStream in)
{

int r, row, col, i, j, k, block;
int n = 0;

Chapter 5 Macroblocks 13

//16x16 pixel macroblock; assume 24-bit for each RGB pixel
RGB_MACRO rgb_macro = new RGB_MACRO();
YCbCr_MACRO ycbcr_macro = new YCbCr_MACRO();
RgbYcc rgbycc = new RgbYcc();
for (row = 0; row < image.height; row += 16) {

for (col = 0; col < image.width; col += 16) {
int m = get_yccblocks(ycbcr_macro, in);
if (m <= 0) { System.out.printf("\nout of data\n"); return m;}
n += m;
rgbycc.ycbcr2macroblock(ycbcr_macro, rgb_macro);
k = (row * image.width + col); //points to macroblock beginning
r = 0;
for (i = 0; i < 16; ++i) {

for (j = 0; j < 16; ++j) {
image.ibuf[k].R = rgb_macro.rgb[r].R;
image.ibuf[k].G = rgb_macro.rgb[r].G;
image.ibuf[k].B = rgb_macro.rgb[r].B;
k++; r++;

}
k += (image.width - 16); //points to next row of macroblock

}
} //for col

} //for row
return n; //number of bytes read

}
}

——————————————————————————————————-

In Decode.java of Listing 5-3, the function get yccblocks() gets YCbCr data from a
file pointed by in; the data are organized in macroblocks, consisting of four 8 × 8 Y sam-
ple blocks, one 8 × 8 Cb sample block and one 8 × 8 Cr sample block. The function
saves the data in a class object of YCbCr MACRO and returns the data via the param-
eter ycbcr macro. The function decode yccFrame() uses get yccblocks() to convert the
YCbCr data of an image or frame to RGB, stores the RGB data in the buffer of a class
object of RGBImage and returns the data via the first function parameter image.

5.3 Testing Implementation Using PPM Image

We can test the implementation presented in section 5.2 using a PPM image, the format of
which has been discussed in Chapter 4. It is the simplest portable format that one can have
and does not have any compression. As pointed out before, the implementation of section
5.2 only works for images with height and width divisible by 16. If you obtain a PPM
image with dimensions non-divisible by 16, you need to use the “convert” utility with the
“-resize” option to change its dimensions before doing the test.

Again, we simplify our code by hard-coding the file names used for testing. We put the
testing files in the directory “../data/”, a child directory of the parent of the directory the
testing programs reside. Suppose the testing file is called “beach.ppm”. All we want to do
is to read the RGB data of “beach.ppm”, convert them to YCbCr and save the YCbCr mac-
roblocks in the file “beach.ycc”. In saving the YCbCr macroblocks, we also need to save
the image dimensions for decoding. We employ a very simple format for our “.ycc” file;
the first 8 bytes contain the header text, “YCbCr420”; the next two bytes contain the image
width followed by another two bytes of image height; data start from the thirteenth byte.

14 Testing Implementation Using PPM Image

We then read the YCbCr macroblocks back from “beach.ycc” into a buffer and convert
the YCbCr data to RGB. We save the recovered RGB data in the file “beach1.ppm”. The
testing program test encode ppm.cpp that performs these tasks is listed in Listing 5-3.

Program Listing 5-3
——————————————————————————————————-

/*
* Test_encode_ppm.java

* Code testing the encoding and decoding of an RGB frame to and

* from YCbCr format. The original RGB data are saved in a PPM

* file. The restored RGB data are saved in another PPM file.

*/
import java.io.*;
import java.awt.Frame;
import java.awt.image.*;
import javax.media.jai.JAI;
import javax.media.jai.RenderedOp;
import com.sun.media.jai.codec.FileSeekableStream;
import javax.media.jai.widget.ScrollingImagePanel;
import com.sun.media.jai.codec.PNMEncodeParam;

public class Test_encode_ppm {
private static byte [] header = {’Y’,’C’,’b’,’C’,’r’,’4’,’2’,’0’};

public static void write_ycc_header(int width, int height,
DataOutputStream out)

{
try {

out.write (header);
out.writeInt (width);
out.writeInt (height);

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
}

public static int read_ycc_header(RGBImage rgbimage, DataInputStream in)
{

byte [] bytes = new byte[header.length];
try {

in.read (bytes);
rgbimage.width = in.readInt ();
rgbimage.height = in.readInt ();

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
for (int i = 0; i < header.length; ++i)

if (bytes[i] != header[i])
return -1; //wrong header

return 1;
}

public static void main(String[] args) throws InterruptedException {
if (args.length < 3) {

System.out.println("Usage: java " + "Test_encode_ppm" +
" input_ppm_filename output_ycc_filename recoverd_ppm_filename\n" +

Chapter 5 Macroblocks 15

"e.g. java Test_encode_ppm ../data/beach.ppm t.ycc t.ppm");
System.exit(-1);

}

/*
* Create an input stream from the specified file name

* to be used with the file decoding operator.

*/
FileSeekableStream stream = null;
try {

stream = new FileSeekableStream(args[0]);
} catch (IOException e) {

e.printStackTrace();
System.exit(0);

}

/* Create an operator to decode the image file. */
RenderedOp image = JAI.create("stream", stream);

/* Get the width and height of image. */
int width = image.getWidth();
int height = image.getHeight();

if (width % 16 != 0 || height % 16 != 0) {
System.out.println("Program only works for image dimensions divisible");
System.out.println("by 16. Use ’convert’ to change image dimension.");
System.exit(1);

}
int [] samples = new int[3*width*height];

Raster ras = image.getData();
//save pixel RGB data in samples[]
ras.getPixels(0, 0, width, height, samples);
RGBImage rgbimage = new RGBImage(width, height);
//copy image data to RGBImage object buffer
int isize = width * height;
for (int i = 0, k = 0; i < isize; ++i, k+=3) {

rgbimage.ibuf[i].R = samples[k];
rgbimage.ibuf[i].G = samples[k+1];
rgbimage.ibuf[i].B = samples[k+2];

}

try {
File f = new File (args[1]);
OutputStream o = new FileOutputStream(f);
DataOutputStream out = new DataOutputStream (o);
write_ycc_header (width, height, out);
Encode enc = new Encode ();

//save encoded data (YCbCr) in file specified by args[1]
enc.encode (rgbimage, out);
out.close();

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}

System.out.printf("\nEncoding done, YCbCr data saved in %s\n",args[1]);

//read the YCbCr data back from file args[1] and convert to RGB

16 Testing Implementation Using PPM Image

DataInputStream in;
Decode ycc_decoder = new Decode ();
try {

File f = new File (args[1]);
InputStream ins = new FileInputStream(f);
in = new DataInputStream (ins);
if (read_ycc_header (rgbimage, in) == -1){

System.out.println("Not YCC File");
return;

}
/*

Decode data: convert YCbCr data from file args[1] to RGB.
Restored RGB data returned via parameter rgbimage.

*/
ycc_decoder.decode_yccFrame (rgbimage, in);

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}

/*
Now save RGB data in PPM format in the file specified by args[2].

*/
isize = rgbimage.width * rgbimage.height;
byte [] P6 = { ’P’, ’6’, ’\n’ };
byte [] colorLevels = { ’2’, ’5’, ’5’, ’\n’ };
String sw = Integer.toString (rgbimage.width) + " ";
String sh = Integer.toString (rgbimage.height) + "\n";
byte [] bytes = new byte[3*isize];
for (int i = 0, k = 0; i < isize; i++, k+=3){

bytes[k] = (byte) (rgbimage.ibuf[i].R);
bytes[k+1] = (byte) (rgbimage.ibuf[i].G);
bytes[k+2] = (byte) (rgbimage.ibuf[i].B);

}
try {

File f = new File (args[2]);
OutputStream o = new FileOutputStream(f);

DataOutputStream out = new DataOutputStream (o);
out.write (P6);
out.writeBytes (sw);
out.writeBytes (sh);
out.write (colorLevels);
out.write (bytes); //save 8-bit RGB data
out.close();

} catch (IOException e) {
e.printStackTrace();
System.exit(0);

}
System.out.printf("Decoded data saved in %s \n", args[2]);

}
}

——————————————————————————————————

You can now put all the java files, common.java, Decode.java, Encode.java, Rg-
bYcc.java, and Test encode ppm.java in the same directory and compile them with the
command,

$javac *.java

Chapter 5 Macroblocks 17

The main class Test encode ppm.class is generated. You have to supply three filenames
to do the test, the first being the input PPM file, the second for storing YCbCr data, and
the third for saving the decoded RGB data. For example you can issue a command like the
following to carry out the test:

$java Test_encode_ppm ../data/beach.ppm t.ycc t.ppm

When it is executed, it does the following:

1. reads RGB data from “../data/beach.ppm”,
2. saves YCbCr data in “t.ycc”, and
3. saves reconstructed RGB data in “t.ppm”.

You can view the PPM files using “xview”; the command “xview ../data/beach.ppm” dis-
plays the original RGB image and the command “xview t.ppm” displays the recovered
RGB image.

You should find that the two images almost look identical to each other even though we
have compressed “beach.ppm” to “t.ycc” by a factor of two. If you want to find out the file
sizes, you can issue the command “ls -l ../data/beach.ppm t.ycc t.ppm”. Upon executing
this command, you should see a display similar to the following:

73743 ../data/beach.ppm
73743 t.ppm
36876 t.ycc

The first column indicates the file sizes in bytes. As you can see, files “beach.ppm” and
“t.ppm” have identical size but the file “t.ycc” that contains YCbCr data is only half the
size of the file “beach.ppm” that contains RGB data.

In our experiment, the original RGB image (beach.ppm) is shown in Figure 5-5a and
the restored RGB image (t.ppm) is shown in Figure 5-5b.

18 Testing Implementation Using PPM Image

Figure 5-5a Figure 5-5b

Chapter 5 Macroblocks 19

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth.

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

An Introduction to 3D Computer Graph-
ics, Stereoscopic Image, and Anima-
tion in OpenGL and C/C++

by Fore June

November 2011
ISBN-13: 978-1466488359

	Chapter 5 Macroblocks
	5.1 Introduction
	5.2 Implementing RGB and 4:2:0 YCbCr Transformation for Video Frames
	5.3 Testing Implementation Using PPM Image

