
1

An Introduction to Digital Video Data Compression in Java

Fore June

Chapter 9 Image Prediction and Motion Compensation

9.1 Introduction

In previous chapters, we combined various well-developed techniques which are shown
in Figure 7-1 to compress image data. You may be amazed to see that the techniques
can achieve high compression ratios with high-quality reproduced decompressed images.
Actually, the best is yet to come. So far, we have only considered static images and have
used .ppm files in our examples; the techniques employed in Figure 7-1 have only exploited
the correlations between pixels (or spatial redundancy). These techniques are very similar
to those used by the JPEG standard to compress static images. Actually, they can be applied
to encode a sequence of images, compressing each image individually. This method of
compressing each frame independently is known as motion JPEG or M-JPEG. Obviously,
M-JPEG has not made use of the correlations between frames (temporal redundancy) to
achieve higher compression. M-JPEG is usually used in very high quality video captures
and the scenes are normally captured in the raw data format which are then edited and
compressed into another format. Encoding each frame individually is also referred to as
intra-frame coding, where at a certain instance, data processing is applied only to the data
of the current frame but not to any other frame in the video sequence. This contrasts with
inter-frame coding, where processing is applied simultaneously to the data of the current
frame and the adjacent frames. If you watch a movie played by a DVD player and at some
point change it to play at a slow-motion mode, you would notice that most consecutive
frames within a sequence are very similar to the frames both before and after the frame of
interest. By exploiting the inherent temporal, or time-based redundancies between frames,
considerably more compression efficiency can be obtained.

Intra-frames are often referred to as I-frames and inter-frames are called P-frames. P
here refers to ‘prediction’. This is because people use motion estimation and a technique
known as block-based motion compensated prediction to exploit the temporal correlations
between frames in order to reduce the redundancies. Indeed, in Chapter 2 we have dis-
cussed that the information conveyed by a set of data closely relates to its predictability. A
perfectly predictable message conveys no information. Actually, besides temporal predic-
tion, we can also use spatial prediction to reduce data redundancies.

9.2 Temporal Model

A temporal model exploits inter-frame correlations to reduce redundancies. Very often, a
predicted frame is calculated or formed by certain procedures and is subtracted from the
current frame, producing a residual or difference frame. The more accurate the prediction,
the less information the residual data contain and the higher compression we can achieve.
The residual data are encoded in the usual way as presented in Figure 7-1. Besides decoding
the encoded residual data, the decoder has to recreate the predicted frame and adds it to
the decoded residual to reconstruct the current frame (usually this is a lossy process; the
reconstructed frame is not identical to the original one). The predicted frame is often
created from one or more past or future frames which are referred to as ‘reference frames’.
Predictions in general can be improved by compensating for motion between the current
frame and reference frames. We will discuss motion compensation in detail in the next
section.

1

2 Block Based Motion Estimation and Motion Compensation

For instance, MPEG predicts images from previous frames (P frames) or bidirectionally
from previous and future frames (B frames). After predicting frames using motion com-
pensation, the coder calculates the residual which is then compressed using the methods
shown in Figure 7-1.

9.3 Block Based Motion Estimation and Motion Compensa-
tion

A simple and commonly used method for temporal prediction is to use the previous frame
as the predictor for the current frame. However, very often for many frames of a video
scene, the main difference between one frame and another is the result of either the cam-
era moving or an object in the frame moving. This means much of the information that
represents one frame will be the same as the information used in the next frame. A direct
subtraction of the previous frame (predictor) from the current frame could produce sub-
stantial nonzero residual values. For instance, consider an example where the images are
shown in Figure 9-1 and Figure 9-2 (for simplicity, we assume that a white pixel has a zero
value and a black pixel has a nonzero value). The objects in the two figures are identical
except that one is displaced with respect to the other. Direct calculation of the difference
between the two frames yields substantial residual values as shown in Figure 9-3. Actually,
this example is quite extreme as the difference has more nonzero values than Frame 1 and
Frame 2, resulting in a less efficient compression. However, if we make compensation for
the motion by translating the object in Frame 1 to the position of the object in Frame 2
before carrying out the subtraction, then the residual will consist of all zeros, which result
in a very efficient compression.

The residual can be compressed and decompressed as usual (Figure 7-1). But how do
we recover the current frame (Frame 2)? To reconstruct the current frame, the decoder
needs to know the the image data of the previous frame (Frame 1) and the displacement of
the object, which is known as motion vector. The process of obtaining the motion vector is
known as motion estimation, and using the motion vector to remedy the effects of motion
is known as motion compensation.

Once we have reconstructed Frame 2, we can use it as the predictor for Frame 3 and
the reconstructed Frame 3 is used as the predictor for Frame 4 and so on. Therefore, we
only need to send one complete frame to be used as the predictor along with the residual
and motion vectors at the very beginning. After that, the predictor (reference frame) is
reconstructed from other information.

Of course in reality, the objects in two different frames are rarely identical. Moreover,
many objects in a scene are deformable and it is very difficult to identify all the objects in
a large number of frames. Then in practice, how do we do motion compensation?

Chapter 9 Image Prediction and Motion Compensation 3

Figure 9-1. Frame 1 Figure 9-2. Frame 2

Figure 9-3. Residual = Frame 1 - Frame 2

Figure 9-4. Motion Compensated Residual

The most commonly used technique in motion compensation is the block-based motion
estimation. In this method, a current frame is divided into rectangular sections or ‘blocks’.
We handle each block independently and search in the reference frame a block that matches
this block best. The following procedures explain more precisely how the search is carried
out for each block of size M ×N :

1. Search a region in the reference frame that best matches the M × N sample block.
This is done by comparing the M × N block of the current frame with some or all

4 Block Based Motion Estimation and Motion Compensation

of the possible M × N regions of the reference frame. The best matched region
can be determined using an objective quality measure such as the minimum absolute
difference (MAD) or sum of absolute difference (SAD) discussed below. That is,
we want to find an M ×N block in the reference frame so that the sum of absolute
difference (SAD) between it and the given sample block is minimized. This is the
motion estimation procedure.

2. Set the selected block in the reference frame to become the predictor for the M ×N
sample block of the current frame and subtract it from the current block to form a
residual M × N block. Also, calculate the motion vector (displacement) between
the two blocks. This is the motion compensation procedure.

3. Encode the residual block using methods discussed in previous chapters (Figure 7-1
). We may also encode the motion vector using a pre-calculated Huffman code. Send
the encoded values to the decoder.

The decoder first decodes the encoded motion vector and residual block. It uses the
motion vector to identify the predictor region in the reference frame and adds the predictor
to the residual to reconstruct a version of the original block.

From the above discussions, we see that encoding one frame usually involves more than
one motion vector. This is the reason that we encode a motion vector with a Huffman code.
Figure 9-5a presents the video compression that extends Figure 7-1 to include temporal
prediction, motion estimation and motion compensation; the steps of RGB-YCbCr trans-
formation and down sampling are omitted in the diagram. The corresponding diagram for
decoding the encoded stream is shown in Figure 9-5b.

Current
Block

Video
Source

> MCe−
+

Residual
Block

DCT DCT
Coeffs

Quantization

Quantized
Block

Reorder Reordered
Block

Run-level
Encoding Run-level

Values

Entropy
Encoding

Bit Stream

e
Reconstructed
Frame

Q−1,
IDCT

+

+
<

MEe >

> Predictor

MV

V

V

Figure 9-5a. Video Compression with ME and MC

In Figure 9-5, the terms MV, ME, MC, and Q−1 represent motion vector, motion esti-
mation, motion compensation, and inverse quantization respectively. Block-based motion

Chapter 9 Image Prediction and Motion Compensation 5

compensation (MC) is commonly used in video compression. This is because it is sim-
ple and straightforward to implement. The algorithm could be efficient, depending on the
choice of block size and search details. The method also fits well with commonly used
rectangular video frames and the block-based Discrete Cosine Transform (DCT). On the
other hand, there are some drawbacks in using block-based MC. Objects in a scene are
often non-rectangular and their boundaries rarely match well with rectangular edges. Very
often, an object may move by a fraction of the distance between pixels from one frame to
another; the motion may not be simple translations but more complex motions like shrink-
ing, rotation, and vibration. Also, objects like animals and liquid could be deformable and
some objects such as clouds, smoke and fire may not even have any regular shape .

Reconstructed
Frame MCg+

+
Residual
Block

IDCT DCT
Coeffs

Inverse Quantization Q−1

Quantized
Block

Reverse
Reorder Reordered

Block

Run-level
Decoding Run-level

Tuples

Entropy
Decoding Encoded

Bit Stream

Reference
Frame MV

↑

Figure 9-5b. Decoding of Compressed Stream with ME and MC

9.4 Matching Criteria

Before we perform any search, we need some criteria to determine which is the best match.
Some of these criteria are simple to evaluate, while others are more involved. Different
kinds of algorithms may use different criteria for comparison of blocks. The commonly
used criteria are the “Sum of Differences” (SAD), the “Mean Absolute Difference” (MAD),
and the “Mean Squared Difference” (MSD). If the compensation block size is N × N
samples, and Iij and I ′ij are the current and reference sample values respectively at location
(i, j), the formulas for these criteria are presented in equations (9.1a), (9.1b), and (9.1c)
below:

SAD =
N−1∑
i=0

N−1∑
j=0

|Iij − I ′ij | (9.1a)

6 Choice of Block Size

MAD =
1

N2

N−1∑
i=0

N−1∑
j=0

|Iij − I ′ij | (9.1b)

MSD =
1

N2

N−1∑
i=0

N−1∑
j=0

(Iij − I ′ij)
2 (9.1c)

The functions SAD, MAD, and MSD presented in (9.1) are also referred to as distortion
functions. Because of its simplicity, SAD is probably the most commonly used measure to
determine the best match. In subsequent discussions, we shall also use “minimizing SAD”
as our criterion to find the best match.

In practice, instead of searching in the RBG space, we search in the YCbCr space. The
residuals are actually the differences of the YCbCr components between two frames. Also,
we need to send the motion vectors to the decoder. Very often, small vectors occur more
frequently, and a pre-calculated Huffman coder ‘bias’ towards smaller values. Therefore,
we usually encode smaller vectors with less number of bits than larger vectors. Conse-
quently, it may be useful to ‘bias’ the choice of a vector towards the location of the current
block which is assumed to be at (0, 0). We can accomplish this by subtracting a constant
from the SAD at location (0, 0).

9.5 Choice of Block Size

The next question arises on motion compensation is what block size should we use in the
search. Intuitively, a smaller block size would give smaller SADs, yielding ‘better’ residual
results (more zeros and small values). However, a smaller block size requires more search
operations and motion vectors encoding. Encoded motion vectors increase the overhead
bits required for decoding and the increase in bits may outweigh the benefits of improved
residual compression. For instance, consider the extreme case that we were to use a block
consisting of only a single pixel (i.e. block size = 1). Then in the searching process, a
pixel with the same intensity value would result in a perfect match and produce a motion
vector. However, we would not gain any compression in this situation because instead of
encoding a set of pixel values, we would encode the same number of two dimensional
motion vectors, which could be less correlated and make the compression worse.

On the other hand, a large block size requires much less search and motion vectors.
However, a large block may contain small moving objects, giving rise to a poor predictor
block and thus poor residual results. The larger the block, the less likely we will find a
predictor block that matches reasonably well with the current block.

One effective way to compromise between choosing a large block size and a small block
size is to adapt the block size to the image characteristics. For example, we choose a large
block size in flat, and homogeneous areas of a frame and choose a small block size in
regions of rapid or complex motion. In practice, video compression standards, includ-
ing MPEG-1, MPEG-2, MPEG-4, H.261, H.263 and H.264 use a macroblock as the basic
block for motion compensation. H.264 also uses adaptive motion compensation block sizes
which are organized in a tree structure. In Chapter 5, we discussed that a macroblock is a

Chapter 9 Image Prediction and Motion Compensation 7

16 × 16 region of a frame. It shows in Figure 5-1 that a 4:2:0 formatted macroblock con-
sists of a 16× 16 luminance (Y) sample block, an 8× 8 blue chrominance (Cb) sample
block and an 8 × 8 red chrominance (Cr) sample block. Motion estimation is done by
searching a 16× 16 sample region in a reference frame that best matches the current mac-
roblock consisting of Y, Cb, and Cr samples. The Minimum Absolute Difference (MAD)
criterion or the Sum of Absolute Differences (SAD) is usually used to determine the best-
match. Motion compensation is done by subtracting the chosen best matching region in the
reference frame from the current macroblock to generate a residual macroblock, which is
encoded in the usual manner (Figure 7-1 of Chapter 7) and sent to the decoder along with
an encoded motion vector that describes the position of the selected region relative to the
current macroblock. Within the encoder, we have to decode encoded residual macroblock
and make use of the motion vector to add it to the matching region to form a reconstructed
macroblock frame which is stored as a reference for future motion compensation operations
(see Figure 9-5). You may wonder why we obtain the reference frame by reconstructing
the macroblock rather than using one from the video source. This is because the encoder
and decoder need to use an identical reference frame for motion compensation otherwise
errors will accumulate over time. Sometimes, if there is a rapid scene change, causing a
significant difference between adjacent frames, it is better not to use motion compensation
in the encoding. To carry out the compression effectively, one can allow the encoding to
switch between intra mode that encodes without motion compensation and inter mode that
uses motion compensation for each macroblock. Also, objects may move by a fraction of
the distance between two pixels rather than an integral value. In this case, we may be able
to find better predictions by first interpolating the reference frame to sub-pixel positions
before searching a best-match of these positions.

9.6 Motion Estimation Algorithms

Often motion estimation (ME) is the most computationally intensive part of a video en-
coder. Reduction of the required computational complexity is one of the most challenging
issues for motion compensation. It is the state of the art in video encoding and is particu-
larly critical in real-time video compression. On the other hand, nonreal-time applications
can do the compression offline and can afford to spend more time on optimizing the com-
pression. The decoder does not need to do any motion compensation and in general runs
a lot faster than the encoder. Moreover, in many applications such as the distribution of a
video clip, compression has to be done only once but decompression will be done many
times. Therefore, these applications may afford to pay the cost of computation even if they
are very high during the compression process.

As mentioned in the previous section, a common way to do motion estimation is to
find a region in the reference frame that best matches the current macroblock and compute
the motion vector between the two regions. How do we find the best-matched region? A
model that is commonly used in searching is the block-translation model, where an image
is divided into non-overlapping rectangular blocks. Each block in the predicted image is
formed by translating a similar source region from the reference frame. This model does
not consider any rotation or scaling of the block. The brute-force exhaustive search, which
is also known as full search is one of such models.

8 Motion Estimation Algorithms

9.6.1 Full Search

In a full search (or exhaustive search), we test every block within a defined range against
the block it is defined to match (target block). In terms of minimizing SAD, exhaustive
search always finds the optimal motion vector because the method compares all possible
displacements within the search range. The following java-like pseudo code shows this
algorithm:

for (int i = 0; i < 256; ++i) {
x[i] = pixel in current macroblock
y[i] = pixel in a 16x16 block in reference frame
for each k = 16x16 block in reference frame {

D[k] = sum of distortion(x[i], y[i][k])
}

}

return k-th 16x16 block in reference frame that minimizes D

If the search window size is 2S + 1, and its center (0, 0) is at the position of the
current macroblock, the search window is typically a rectangular region with lower-left
and upper-right corners defined by the coordinates (−S,−S), and (+S, +S). Full search
evaluates SAD at each point of the window, for a total of (2S + 1)2 points. A simple full
search strategy is to start from the upper-left corner at (−S, +S) and proceed in raster scan
order, from left to right and top to bottom until SADs at all positions have been evaluated.
However, in a typical video sequence, movements of objects between frames are small
and small SAD positions are concentrated around (0, 0). It is not likely that we find a
minimum SAD near the corners of the search window. Therefore, we can simplify a full
search by starting the search at the center (0, 0) and proceeding to evaluate points in a
spiral pattern as shown in Figure 9-6. Of course, if we evaluate the SAD at every position
as usual, we do not gain an advantage. However, we can make a short cut by adopting an
early termination strategy, in which the evaluation of a SAD terminates once its value is
larger than the previous SAD minimum (note that we just terminate the SAD evaluation at
the position but we do not terminate the search until all positions in the window have been
covered). By using this early termination strategy, it is increasing likely that the search
will terminate early as the search pattern expands outward, and thus saving a significant
amount of time in calculating SADs.

There are various strategies to decide on the search range. The search range usually
depends on how fast objects move in the image sequence, and how well we want to track
the fastest objects. If our reference frames are adjacent frames, it is not possible to track an
object that moves more than an image width or height between successive frames. It might
be reasonable to track an object that moves about half an image width between successive
frames but in terms of TV, this corresponds to an object that appears in a frame and might
disappear in the subsequent frame in one tenth of a second, which is faster than what we
need. If we aimed at tracking an object that traverses a frame in about half a second, and
the video dimension is about 512×512 and is played at a rate of 40 frames per second (fps
). we would need to accommodate a movement of about 12 pixels per frame. If we wish to

Chapter 9 Image Prediction and Motion Compensation 9

make predictions from two successive frames instead of one, we would need to double the
search range to about 24 pixels.

V

Search Window

Figure 9-6. Full Search with Spiral Scan

Also, in real-world scene, there are usually more and faster movements in the horizontal
direction than in the vertical direction. People found that it was best to search the width
about twice as much as the height.

Full search is rather easy to implement. However, the best match as determined by a
criterion like minimum SAD may not represent the real match of the object that appears
in two frames. Good matches tend to minimize the residual errors, resulting in good com-
pression, but if the matches do not represent true motion, the motion vectors of subsequent
matching blocks may not correlate well, and encoding these vectors become inefficient.

9.6.2 Fast Searches

Though full search gives optimal results for a given criterion, it is computationally inten-
sive. There are suboptimal search algorithms, usually referred to as fast search algorithms
that trade the quality of the image prediction with the efficiency of searching. These algo-
rithms evaluate the search criterion at a subset of the locations of the search window.

Three Step Search (TSS)

The Three Step Search (TSS),introduced by Koga et al in 1981 is a popular and robust
search algorithm that gives near-optimal results. The N-Step Search (NSS) is a modified
version of the TSS that calculates the SADs at a specified subset of locations within the
search window. It searches for the best motion vectors in a coarse to fine search pattern.
Figure 9-7 illustrates the search positions of this algorithm. Suppose the origin (0, 0) is at
the center of the figure. We start by choosing the origin as our center of searching and pick
a step size b, which is 4 in Figure 9-7. In the first stage, in addition to the origin, we choose
eight locations of blocks at a “distance” of b from the center for comparison; in Figure 9-7
these first 9 search locations are labeled ‘1’. We pick the location that gives the smallest
SAD as our new center of search, which is marked by a concentric circle in Figure 9-7. In
the second stage search, the step size is halved and a further 8 locations around the new
center are chosen with the new step size which is 2 in this example. The search locations

10 Motion Estimation Algorithms

for this stage is labeled ‘2’ in Figure 9-7. Once again, we pick the best-matched location to
be the new search center and repeat the procedure until the step size cannot be subdivided
further.

In an N-step search, the step size in general is 2(N−1) and there are N searching levels.
The number of searches is only 8N +1 as compared to (2N+1−1)2 in a corresponding full
search. However, NSS uses a uniformly allocated checking point pattern in the first step,
which could be inefficient for small motion estimation.

1c 1c 1c1c 1c 1c1c 1c 1c
2c 2c 2c2c 2c2c 2c 2c

3c3c3c3c 3c3c3c3cd dd
Figure 9-7. Three Step Search (TSS)

Hierarchical Search

Hierarchical search employs the coarse-to-fine approach to reduce computations at the
coarse levels. At a coarse level, a ‘large’ block may contain many pixel positions but only
a small number of searching locations; the sample value at a location may be the average (
filtered value) of many adjacent pixel values. The algorithm first searches a large block to
obtain a first approximation of the motion, which can be successively refined by searching
smaller regions using smaller blocks, each block being appropriately filtered. The method
has a better chance of getting the “real” motion vector because we first establish the general
trend of motion using large filtered blocks and accomplish more accurate measurement
using small blocks. It has been shown that motion vectors obtained by hierarchical search
has significantly lower entropy, implying that they require less number of bits to encode.

For example, the mean pyramid method constructs different pyramidal images by sub-
sampling, and estimates motion vectors starting from higher levels (coarse levels) and pro-
ceeding to lower ones. We can reduce the noise at higher levels by constructing the image
pyramids using low pass filters, and use a simple averaging to construct the multiple-level
pyramidal images. For instance, suppose gL(x, y) is the gray level value at the position
(x, y) of the L-th level and g0(x, y) represents the original image at level 0. We obtain the
pixel value at a level by averaging the four pixel values in a nonoverlapping window of the
next lower level as shown in Equation (9.2):

Chapter 9 Image Prediction and Motion Compensation 11

gL(x, y) = b1
4

1∑
i=0

1∑
j=0

gL−1(2x + i, 2y + j)c (9.2)

where bxc denotes the floor function of x, which truncates x to the nearest integer. If there
are totally three levels in the pyramid, one pixel at level 2 corresponds to a 2 × 2 block
and a 4 × 4 block at level 1 and level 0 respectively. Therefore, a block of size 16 × 16
at level 0 produces a block of size 16/2L × 16/2L at level L > 0. After constructing the
mean pyramid, we can search the images starting at level 2 using the minimum SAD (Sum
of Absolute Differences) criterion; we select the motion vector with the smallest SAD as
the coarse motion vector at that level. We send the motion vector detected at the higher
level to the next lower level (level 1), which uses the received motion vector to guide the
refinement step at that level. We repeat the motion estimation process once more down to
level 0. Since SAD’s are computed at the highest level based on relatively small blocks, the
same values are likely to appear at several points. To solve this problem, we can use more
than one candidate at the highest level (level 2 for our special case). A number of motion
vectors at level 2 are propagated to the lower one. Full search in a small window around
the candidates is used at level one to find the minimum difference location as the search
center at layer 0. Figure 9-8 shows the search locations of the algorithm. At level 2 of
the figure, three best matched points are selected as centers for search windows in the next
level, which are shown at level 1 of the figure. Level 0 shows the search window where we
search for the best match.

12 Motion Estimation Algorithms

• •

•

• •

•

•

Level 2

Level 1

Level 0

Figure 9-8. Search Locations for Hierarchical Search

Nearest Neighbours Search

One problem of the TSS, Hierarchical Search and many other suboptimal searches is
that the searches may quickly get trapped in local minima, as the distortion function does
not necessarily increase monotonically as we move away from the global minimum dis-
tortion candidate. This could result in a significant loss in estimation accuracy, and hence
compression performance as compared to Full Search. This problem can be alleviated by
incorporating prediction into a fast-search algorithm. We can predict the the current motion
vector (MV) from previously coded motion vectors that represent spatially or temporally
neighbouring macroblocks. Localizing the search origin in this way reduces the possibility
of getting trapped in local minima, as the predicted motion vector is usually closer than the
vector (0, 0) to the global minimum candidate. If the predicted MV is accurate, we can
quickly find the “optimal” MV by searching a relatively small neigbourhood.

Nearest Neighbours Search (NNS) makes use of the above-mentioned motion vec-
tor prediction method and highly localized search pattern to give estimation accuracy ap-
proaching that of Full Search in many applications but with much lower computational
complexity. The algorithm offers a more reliable MV prediction that detects potential
non-motion changes in the video sequence. In the algorithm, we predict an MV based
on previously coded MVs and transmit the difference (MVD) between the current MV
and the predicted MV. NNS exploits this property by giving preference to MVs that are
close to the predicted MV, and thus minimize the MVD. Figure 9-9 shows an example of
search positions of NNS, which first evaluates the SAD at the search origin (labeled ‘0’)
and then calculates the SAD at the locations of the predicted MV as well as the SADs of
the surrounding points in a diamond shape (labeled ‘1’). If the SAD at ‘0’ or the cen-
ter of the diamond is lowest, the search terminates, otherwise the location that gives the

Chapter 9 Image Prediction and Motion Compensation 13

smallest SAD is chosen (double-circled ‘1’ in Figure 9-9), and becomes the center of a
new diamond-shaped search pattern (labeled ‘2’) and the search process continues. In
the example, the next search center is double-circled ‘2’ and the final selected location is
double-circled ‘3’.

Search Origin

Predicted
Motion Vector

0c 1c1c1c1c 1c
2c2c2c3c

3cddd

Figure 9-9. Nearest Neighbours Search (NNS)

Others

Many other fast search algorithms have been proposed. More popular ones include Bi-
nary Search (BS), Two Dimensional Logarithmic Search (TDL), Four Step Search (FSS),
Orthogonal Search Algorithm (OSA), One at a Time Algorithm (OTA), Cross Search Al-
gorithm (CSA), and Spiral Search (SS). In each case, we can evaluate its performance by
comparing it with Full Search. We can compare the time an algorithm used and the com-
pression ratio achieved against that of Full Search. Sometimes, an algorithm may be good
for certain applications but not for others. For example, algorithms such as Hierarchical
Search are more easily to be implemented with customized hardware than others.

9.7 Frame Types

There are two types of video frames concerning motion compensation. An intraframe or
I-frame is a frame that is encoded using only the information from within that frame. On
the other hand, inter- or non-intra frames are encoded using information from within that
frame as well as information from other frames. Inter-frames can be further classified as
P-frames and B-frames.

9.7.1 Intraframes (I-frames)

Intra frames are coded without motion estimation and compensation. That means it is
encoded spatially with no information from any other frame. In other words, no temporal

14 Frame Types

processing is performed outside of the current picture or frame. Coding an I-frame is
similar to coding an image in JPEG. Compressing a video using I-frames only is similar to
the techniques in motion JPEG. The compression ratio obtained is in general significantly
lower than that of compressing with inter-frame coding.

Spatial prediction can be used in intra-frame coding. In spatial prediction, we make use
of previously-transmitted samples to predict an image sample in the same image or frame.
Figure 9-10 shows a pixel d that is to be encoded. If the pixels in the frame are processed in
the order from left to right and top to bottom, then the neighbouring pixel values at a, b, and
c have been processed and are available in both the encoder and decoder. The encoder pre-
dicts a value P (d) for the current pixel d based on some combinations of previously coded
pixel values, I(a), I(b), and I(c). It then subtracts the actual pixel value I(d) of d from
P (d) and encodes the residual (the difference resulted from the subtraction). The decoder
uses the same prediction formula and adds the decoded residual to construct the pixel value.

Raster Scan Order

a b

c d d = current pixel

Figure 9-10. Spatial Prediction

The following is an example of spatial prediction for Figure 9-10. In the example, pixel
c has a larger weight than b and a because it is the most recently scanned pixel. We also
assume that the encoding of the residuals is a lossless process, which means that the pixel
values can be recovered exactly from the decoded residuals.

Example 9-1 Spatial Prediction for Figure 9-10.

Encoder prediction: P (d) = 2I(c) + I(b) + I(a)
4

Residual: R(d) = I(d)− P (d) is encoded and transmitted.

Decoder decodes R(d), and

obtain P (d) using same prediction formula: P (d) = 2I(c) + I(b) + I(a)
4

Reconstruct sample value at d: I(d) = R(d) + P (d)

Chapter 9 Image Prediction and Motion Compensation 15

If the residual encoding involes lossy operations such as quantizations, the decoded sample
values, I ′(a), I ′(b), and I ′(c) may not be identical to the original sample values, I(a), I(b),
and I(c) of pixels a, b, and c. In this case, the decoder does not know the values of
I(a), I(b), and I(c) and if we still use I(a), I(b), and I(c) to calculate P (d) in the encoder
as it does in the example, the process could lead to a cumulative error between the encoder
and decoder. Therefore, in this situation, the encoder should first reconstruct the sample
values I ′(a), I ′(b), and I ′(c) from the previous residuals before calculating the current pre-
diction P (d). The encoder uses the reconstructed sample values to form the prediction in
the above example:

P (d) = 2I ′(c) + I ′(b) + I ′(a)
4

R(d) = I(d)− P (d)
R′(d) = Decode(Encode(R(d)))
I ′(d) = P (d) + R′(d)

(9.3)

In this way, just like what we discussed in Section 9.5, where we obtain the reference
frame by reconstructing the macroblock rather than using one from the video source, the
encoder and decoder use the same sample values in calculating P (d), and the cumulative
error can be avoided. The prediction equation of (9.3) is a special case of the more general
linear prediction:

P (d) = CaI ′(a) + CbI
′(b) + CcI

′(c) (9.4)

where Cx is a constant for pixel x. In the example of (9.3), the constants for pixels a, b, and
c are 0.25, 0.25, and 0.5 respectively. For things to work properly, the sum of the constants
in the linear prediction of (9.4) must be equal to 1. If the predicted values I ′ have been
scaled in the process, the original sample value I(d) of the current pixel d must be scaled
accordingly before subtracting P (d) from it to form the residual R(d).

In practice, we may perform intra-prediction after DCT transformation at a block-based
level with block size 8×8. Very often, the low-frequency DCT coefficients of neighbouring
blocks are correlated. Therefore, we can predict the DC coefficient (i.e. F00 of Chapter 6)
and AC coefficients of the first row and column (F0i, Fi0, 0 < i < 8) from neigbouring
coded blocks. Table 9-1 shows the DCT coefficients for each of the four luma 8× 8 block
of a mcaroblock. The data are obtained from the same PPM file, “beach.ppm” that we have
used for testing in the previous chapters. The DC coefficients (629, 637, 653, and 662)
are clearly similar but it is less obvious if there is correlation between the first row and first
column of the AC coefficients in the blocks.

16 Frame Types

Table 9-1 Four 8× 8 luma blocks of a DCT Macroblock

629 -5 -1 -1 1 -1 -2 -1
-8 -5 -1 0 0 -1 -2 -2
2 -3 -1 -1 -4 -4 -3 -2
-3 -4 -3 -1 1 -2 -4 -3
-1 -6 0 -1 -1 1 0 0
-4 -5 -3 0 2 -1 -1 0
-1 -2 -2 -1 -1 -1 -1 -2
1 -1 0 0 0 -2 -2 -1

637 -5 0 1 2 0 0 -1
-4 2 -1 -2 -1 1 0 0
4 -1 1 -2 1 2 1 1
2 0 -3 -1 0 1 0 0
2 -1 -1 0 -1 1 -1 3
2 -2 -1 -1 -1 0 -1 0
0 0 1 2 1 -1 0 -2
-1 -1 1 1 0 0 0 -1

653 1 0 0 -1 1 -1 0
-9 1 1 -2 -1 0 -1 2
0 1 0 0 0 0 0 -1
-2 0 -2 1 1 -1 2 0
0 -1 -1 0 -1 0 0 0
1 -1 1 -1 0 0 -1 1
0 -1 1 0 0 0 0 0
0 0 1 2 2 0 1 -2

662 -6 1 -1 0 -2 0 0
-7 1 1 -2 0 1 0 1
1 1 1 1 -1 0 -1 -1
0 -1 -1 1 -1 -2 0 0
2 1 1 0 -1 -1 1 0
0 0 -1 -1 -1 0 0 1
-1 -1 -2 -1 0 2 -2 0
1 0 -1 0 1 1 -2 0

Suppose FX
ij represent the coefficient of block X at location (i, j). Figure 9-11 presents

an example of prediction for the current block D from neigbouring blocks. We predict FD
00,

the DC coefficient of the current block from the DC coefficients of the previously coded
neighbouring 8 × 8 blocks, A, B, and C. The question is which block should we choose
to form the prediction. Should we choose A, B or C, or a combination of them? A simple
solution is to use either B or C as they are adjacent to the current block D. This is shown
in Figure 9-11. In determining if we should choose B or C, we can examine the gradients
of the DC values between the blocks. We choose the block that gives the smaller gradient.
That is, the choice of prediction is determined by:

if |FA
00 − FC

00| < |FA
00 − FB

00|
Predict from Block B;

otherwise
Predict from Block C;

(9.5)

The prediction value PD
00 of block D is set to the DC coefficient of the chosen block and is

subtracted from the actual DC value of the current block. For example, if block C is chosen,

PD
00 = FC

00

RD
00 = FD

00 − PD
00

(9.6)

The residual RD
00 is then coded and transmitted.

C D

BA

D = Current Block

Figure 9-11. Prediction of DC of 8× 8 DCT Block

Chapter 9 Image Prediction and Motion Compensation 17

We predict the AC coefficients in a similar way as shown in Figure 9-12, with the first
row or column predicted in the direction determined by gradients of DC coefficients of
(9.5). For example, if the prediction direction is from Block B, we predict the first row of
AC coefficients of Block D from the first row of Block B. If the prediction direction is from
Block C, we predict the first column of Block D from the first column of Block C.

C D

BA

D = Current Block

Figure 9-12. Prediction of AC of 8× 8 DCT Block

9.7.2 Inter-frames

In addition to the techniques used in intra-frame coding, Inter-frame (or nonintra-frame)
coding utilizes motion estimation and compensation to improve the compression of videos;
it exploits the temporal correlations to make good predictions to reduce data redundan-
cies. There are two types of inter-frames, predicted frames (P-frames) and bidirectional
frames (B-frames). The difference between P-frames and B-frames is that they use differ-
ent kinds of reference frames to make predictions. These two kinds of frames and I-frames
usually join in a GOP (Group of Pictures), which is often required to synchronize the
encoder and decoder, when the encoded data are transmitted over a network and errors may
occur. We can use an I-frame as a reliable reference for synchronization as it does not re-
quire information from other frames to be decoded. I-frames are also important for random
access of compressed video files. Because of these, I-frames are also known as key frames
or access points.

P-frames

Starting with an I-frame, we can forward-predict a future frame, which is commonly
referred to as a P-frame. We can also use a P-frame to predict other P-frames in the future.
Therefore, a P-frame is always predicted from a past frame, a frame that has been coded
earlier.

As an example, consider a GOP that has 6 frames. The ordering of the frames will be:

I, P, P, P, P, P, I, P, P, P, P, P, ...

We predict each P-frame in the sequence from the frame immediately preceding it, whether
it is an I-frame or a P-frame. The I-frame can be used for synchronization.

B-frames

B-frames are bidirectionally predicted frames. They can be predicted or interpolated
from earlier and/or later frames. That is, we not only search a past frame to find the best

18 Typical GOP Structure

match but also a future frame to find the optimal result. It is easy to understand making pre-
dictions using information of a previously coded frame. But how do we make predictions
from a future frame, something that has not happened? The trick is that the terms “past”
and “future” are artificial; we call the frames occurred before the current frame the past
frames and frames occur after the current one, the future frames. To make predictions from
a future frame, we must look ahead and buffer it, encoding and decoding it for it to be used
as a reference frame. This is called backward prediction. Therefore, if video compression
and decompression is to be done in “real time”, there must be a time delay between the
compression and decompression process if B-frames are used. Figure 9-13 shows various
prediction modes for inter-frames.

Forward

Backward

Bidirectional

I B B P

Figure 9-13. Prediction Modes of Inter-frames

9.8 Typical GOP Structure

Figure 9-14 shows a typical group of picture (GOP) structure, “IBBPBBP...”. We can
categorize the I-frames and P-frames as anchor frames, because they may be used as ref-
erence frames in the coding of other frames. On the other hand, B-frames are not anchor
frames as they are never used as a reference. Note that the structure starts with an I-frame;
it is essential to start coding with an I-frame as there is no previous information that can be
used for reference in motion estimation.

Figure 9-15 shows a prediction scheme of the GOP structure. We use the I-frame to
predict the first P-frame, and use these two frames (I and P) to predict the first and second
B-frame. Then we use the first P-frame to predict the second P-frame. The first and second
P-frames are joined to predict the third and fourth B-frames.

As you can see from the prediction scheme, we need the fourth frame (P-frame) to
predict the second and the third (B-frames). So we need to transmit the P-frame to the

Chapter 9 Image Prediction and Motion Compensation 19

decoder before the B-frames and consequently we have to delay the transmission in order
to keep the P-frame or to buffer the frames.

I
B

B
P

B
B

P

Figure 9-14. A Typical Group of Pictures (GOP)

Ih Bh Bh Ph Bh Bh Ph
Figure 9-15. A Prediction Scheme for GOP of Figure 9-14

9.9 Rate Control

In many video compression applications, compressed data are sent over a network as bit-
streams. The traffic in a large network is usually bursty. It may be idle for some of the
time but may have congestion at some other time. This may make available bandwidth to
clients change from time to time. Also, if the encoding parameters of a video codec are
kept constant, the number of coded bits may change for each macroblock, depending on
the video content; this will lead to variations of the output bit rate of the encoder. Typi-
cally, high-motion scenes or scenes with fine details generate more bits and low motion or
coarse-detail scenes produce fewer bits. These can cause problems in delivering video data
and it is necessary for the video encoder to adjust the bit rate to match the available bit rate
of the transmission channel.

One simple way to control bit rate is to buffer the encoded data before transmission,
which can ‘smooth’ the impact of fluctuations in the available bandwidth. Figure 9-16
shows a block diagram explaining this mechanism. The variable bit rate output is buffered
by a queue, which is first-in first-out (FIFO). The data in the queue are deleted at a con-
stant rate to match the available bandwidth of the delivering channel. Another queue at the
receiving end of the channel is used to buffer data to the decoder which deletes the data
from the queue at variable bit rate; this is because for the same number of input bits, the
decoder may produce a different number of output bits depending on the context of the
data. If the decoder needs to produce data at a constant frame rate, it has to consume input
bits at a variable rate to counter the variations in the amount of data produced for a given
number of bits. Of course, if the fluctuations in the channel capacity or the data context is

20 Implementations

too large, queues with limited size may not be able to maintain a constant bit rate, but at
least the queues can ‘smooth’ the fluctuations.

Video
Data Encoder

Constant
Frame Rate
↓

Variable
Bit Rate
↓

Constant
Bit Rate
↓

Network

Constant
Bit Rate
↓

Variable
Bit Rate
↓

Decoder

Constant
Frame Rate
↓

Video
Data

Figure 9-16. Controlling Bit Rate Using Queues

Another way to control the bit rate of the bitstream generated by a video encoder is to
vary the encoding parameters from time to time in order to maintain a target bit rate. One
important parameter that can change the encoding bit rate is the quantization parameter (
Qp). The encoder can control the bit rate by analyzing the rate at which the encoder is
producing data and comparing it with the desired target bit rate. If the encoder is producing
too much data, it simply raises the Qp. If too little data is being produced, it lowers the Qp.
Note that the larger the Qp, the better the compression but the lower the quality. There are
many different algorithms for varying Qp depending on the criteria of performance. Some
of these algorithms also use the option of dropping frames of video as well as adjusting Qp.
The trade-off of the quality of each frame with the jerkiness in the video caused by frame
dropping determines the extent to which we adjust the Qp and the number of frames we
want to drop. Alos, the bit rate profiles and characteristics of these algorithms will differ,
and often the choice of algorithm is dependent on the network and target application.

9.10 Implementations

We shall discuss the implementation of motion estimation and motion compensation in
the next few chapters. We do not intend to cover many of the search algorithms and the
prediction methods. We shall only discuss two simple cases, the encoding of the residual
between two frames without any motion estimation, and the use of Three Step Search (
TSS) to improve upon the encoding.

Chapter 9 Image Prediction and Motion Compensation 21

22 Implementations

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth.

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

An Introduction to 3D Computer Graph-
ics, Stereoscopic Image, and Anima-
tion in OpenGL and C/C++

by Fore June

November 2011
ISBN-13: 978-1466488359

	Chapter 9 Image Prediction and Motion Compensation
	9.1 Introduction
	9.2 Temporal Model
	9.3 Block Based Motion Estimation and Motion Compensation
	9.4 Matching Criteria
	9.5 Choice of Block Size
	9.6 Motion Estimation Algorithms
	9.6.1 Full Search
	9.6.2 Fast Searches
	Three Step Search (TSS)
	Hierarchical Search
	Nearest Neighbours Search
	Others

	9.7 Frame Types
	9.7.1 Intraframes (I-frames)
	9.7.2 Inter-frames
	P-frames
	B-frames

	9.8 Typical GOP Structure
	9.9 Rate Control
	9.10 Implementations

