
1

An Introduction to Digital Video Data Compression in Java

Fore June

Chapter 15 Principal Component Analysis

15.1 Introduction

We have mentioned in Chapter 14 that people use the techniques of Principal Component
Analysis (PCA) to model face features. Actually, PCA is a common statistical technique
used in finding patterns in high-dimension data. It has applications in various fields such
as image processing and face recognition. Before discussing PCA, we need to have a basic
knowledge about the tools and techniques involved in PCA. Therefore, this chapter first
introduces the mathematical tools that will be used in PCA, starting from a discussion
on matrix operations. It then discusses standard deviation, covariance, eigenvectors and
eigenvalues. If you are already familiar with these basic tools and concepts, you can skip
them and go directly to the PCA section.

Some of the examples of this chapter are adopted from the college textbook Linear
Algebra with Applications by Steven J. Leon.

15.2 Matrix Algebra

A matrix is a rectangular array of numbers. An m × n matrix, read “m by n matrix”, has
m rows and n columns. Let A be an m× n matrix with aij denoting the element in the ith
row and jth column. Then

A = (aij) =



a11 a12 ... a1n

a21 a22 ... a2n

.

am1 am2 ... amn

 (15.1)

The elements a11, a22, a33... are called the elements of the main diagonal ofA. Two matri-
ces A = (aij) and B = (bij) are equal if they have the same number of rows and columns
and the elements are equal, i.e. aij = bij . The following are examples of a 3× 1 matrix, a
2× 3 matrix, and a 3× 3 matrix respectively. 3.1

4.1
5.9

 ,

(
1 −2 3
9 8 5

)
,

 3 1 4
1 5 9
2 6 5


The transpose of A in (15.1) is obtained by interchanging rows and columns, and is

denoted by AT . That is,

AT =



a11 a21 ... am1

a12 a22 ... am2

.

a1n a2n ... amn

 (15.2)

1

2 Matrix Algebra

and AT has n rows and m columns. For example,(
1 −2 3
9 8 5

)T
=

 1 9
−2 8
3 5


Maxtrix X = (x1, x2, ..., xn) is a 1× n matrix; it has one row and n columns, and we call
it an nth order row vector. Its transpose

XT =


x1

x2

.

.

.
xn


is an n×1 matrix, consisting of n rows and one column, and will be called a column vector
in contrast to X itself.

We note that, if A is any matrix and AT its transpose, then A is the transpose of AT so
that (AT)T = A. We call a matrix that has the same number of rows as columns a square
matrix. The transpose of a square matrix is also a square matrix. A square matrix with
n rows and n columns is referred to as a matrix of order n. If the transpose of a square
matrix is equal to itself (i.e. AT = A), then it is called a symmetric matrix. An important
property of symmetric matrix is that we can diagonalize any symmetric matrix A, which
means that A is similar to a diagonal matrix. That is, there exists an invertible matrix P
such that P−1AP is a diagonal matrix, where P−1 is the inverse of P .

The row rank of a matrixA is the maximum number of linearly independent row vectors
of A and the column rank is the maximum number of linearly independent column vectors.
A matrix A has full column rank if its column vectors are independet and it has full row
rank if its row vectors are independent. One can show that the row rank is always equal
to the column rank of a matrix. Therefore, we define that the rank of a matrix A is the
maximum number of linearly independent row (or column) vectors of A and is denoted
by rank(A). The rank of an m × n matrix cannot be greater than m nor n. That is
rank(A) ≤ min(m,n). A matrix that has a rank as large as possible is said to have full
rank, otherwise the matrix is rank deficient. If A is a square matrix (i.e., m = n), then A is
invertible (i.e., its inverse exists) if and only if A has rank n (i.e., A has full rank).

An identity matrix I is an n× n square matrix with I = (δij), where

δij =
{

1 if i = j
0 if i 6= j

is the Kronecker delta. An identity matrix has 1’s on the main diagonal and 0’s elsewhere.

Matrix Multiplication

If A is an m× n matrix and B is an n× r matrix, we can form the product of A and B,
which is an m× r matrix; if C is the product of A and B, we write C = AB and

cij =
n∑
k=1

aikbkj 1 ≤ i ≤ m, 1 ≤ j ≤ r (15.3)

Chapter 15 Principal Component Analysis 3

One can easily show that matrix multiplication is associative. That is, if A,B,C are any
three matrices of types (m,n), (n, r) and (r, s), respectively, then

(AB)C = A(BC) (15.4)

One can also show that the transpose of the product of two matrices A and B is equal to
the product of their transposes in reverse order. That is,

(AB)T = BTAT (15.5)

For any n× n matrix A,
IA = AI = A

Matrix Addition

If two matrices A and B are of the same type (m,n), their sum C = A+B is obtained
by adding corresponding elements of A and B:

cij = aij + bij (15.6)

Clearly, addition of matrices is commutative,A+B =B+A, and associative, (A+B)+C =
A + (B + C). Moreover, the zero matrix O satisfies the law A + O = A + O = A for
every matrix A. For every matrix A = (aij), there corresponds a negative −A = (−aij)
with property A+ (−A) = O.

One can also easily prove that matrix multiplication is distributive with respect to matrix
addition. That is, if matrices A and B are of type (m,n), C of type (r,m) and D of type
(n, s), then

C(A+B) = CA+ CB (15.7)

and
(A+B)D = AD +BD (15.8)

Determinant

The determinant of a square matrix is a value associated with the matrix and is computed
from the entries of the matrix. It provides valuable information for the matrix operations
such as computing the inverse. The determinant of a matrix A is denoted det (A) or |A|.

Let A = (aij) be a square matrix of order n. We can form a product of elements of A
by multiplying together one and only one element from each row and each column, which
will be in the form,

a1i1a2i2 · · · anin (15.9)

where i1, i2, · · ·, in is a permutation of the numbers 1, 2, · · ·, n. The numbering and per-
mutation ensure that one and only one element is chosen from each row and each column.
The determinant of A is the sum of some of products in the form of (15.9). We say that
an inversion occurs in the permutation i1, i2, · · ·, in whenever a larger subscript precedes a
smaller one. For example, consider n = 4; the product

a14a22a31a43

4 Matrix Algebra

has a total of 4 inversions because i1i2i3i4 = 4213, so 4 precedes 1, 2, and 3 (3 inversions),
and 2 precedes 1 (1 inversion); the product

a11a22a33a44

has zero inversion. We say that a permutation i1i2 · · · in of the numbers 1, 2, · · ·, n is even
if the number of inversions is even and it is odd if the number of inversions is odd. We can
now define the determinant of a square matrix.

We denote the determinant associated with the square matrix A by |A| or by∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n

a21 a22 ... a2n

.

an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣
(15.10)

The determinant is a polynomial of the elements of A defined by

|A| =
∑
±a1i1a2i2 · · · anin (15.11)

where we sum over all n! permutations i1, i2, ···, in of 1, 2, ···, n; the sign before a term is +
if the permutation is even, and− for odd permutations. One can prove that the determinant
|A| of an n× n square matrix A has the following properties.

1. |AT | = |A|.
2. If the elements of two rows (or two columns) are identical, |A| = 0.
3. If matrix B is obtained by interchanging two rows or two columns of A, then |B| =
−|A|.

4. If matrix B is obtained by multiplying all the elements of a row or a column of A by
a constant c, then |B| = c|A|.

5. If c is a constant, then |cA| = cn|A|.
6. If B is an n× n matrix, then |AB| = |A||B|.
7. If all the elements of a row or a column of A are 0, then |A| = 0.
8. If matrix B is obtained by multiplying a row (or column) vector of |A| by a constant
c and adding the result to another row (or column) vector, then |B| = |A|.

9. If I is the identity matrix, then 1 = |I| = |AA−1| = |A||A−1|, where A−1 is the the
inverse of A, which is discussed below. Therefore

|A−1| = 1
|A|

10. The determinant of the similarity transformation of A is equal to |A|:

|BAB−1| = |B||A||B−1| = |B||A| 1
|B|

= |A|

For example, a 2× 2 matrix can be calculated as,∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc (15.12)

Chapter 15 Principal Component Analysis 5

The calculation can be represented graphically as shown in Figure 15-1 below, where an
arrow crosses the elements of a diagonal of the matrix, giving rise to a term of (15.11). We
put a ‘−’ sign in front of the term if the arrow points upward, and a ‘+’ sign for the arrow
pointing downward. The determinant is given by the sum of the terms.

a b
c d

−cb

+ad

Figure 15-1 Calculating 2× 2 Matrix Determinant

We can similarly use this graphical method to calculate the determinant of a 3×3 matrix
A = (aij). In this case, we copy the first two rows of the matrix and put them beneath the
last row. We then cross out the diagonal elements as shown in Figure 15-2. Again, a ‘−’
sign is added for an ‘upward’ term and a ‘+’ sign is added for a ‘downward’ term. The
determinant is the sum of all the terms thus obtained.

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12 a13

a21 a22 a23

−a31a22a13 = −a13a22a31

−a11a32a23

−a21a12a33

+a11a22a33

+a21a32a13

+a31a12a23

Figure 15-2 Calculating 3× 3 Matrix Determinant

If we delete some rows and/or columns of a matrix A, the matrix of the remaining
elements is referred to as a submatrix of A. In particular, if A is a square matrix, and we
delete the i-th row and j-th column of it, then we denote the remaining submatrix by Aij .
The determinant |Aij | is called the minor of of the element aij in A, and (−1)i+j |Aij | is
called the signed minor or cofactor of aij in A. With these notations, one can express the
determinant of an n× n matrix A as an expansion of determinants of minors as follows:

|A| = (−1)i+1ai1|Ai1|+ (−1)i+2ai2|Ai2|+ · · ·+ (−1)i+nain|Ain|

= (−1)1+ja1j |A1j |+ (−1)2+ja2j |A2j |+ · · ·+ (−1)n+janj |Anj |
(15.13)

where i, j = 1, 2, · · ·, n. For example, we can express the expansion along the first row as

6 Matrix Algebra

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ·· a1n

a21 a22 ·· a2n

· · ·· ·

an1 an2 ·· ann

∣∣∣∣∣∣∣∣∣∣∣∣
= a11

∣∣∣∣∣∣∣∣∣
a22 a23 ·· a2n

· · ·· ·

an2 an3 ·· ann

∣∣∣∣∣∣∣∣∣− a12

∣∣∣∣∣∣∣∣∣
a21 a23 ·· a2n

· · ·· ·

an1 an3 ·· ann

∣∣∣∣∣∣∣∣∣

+ · · ·+(−1)1+n

∣∣∣∣∣∣∣∣∣
a21 a22 ·· a2(n−1)

· · ·· ·

an1 an3 ·· an(n−1)

∣∣∣∣∣∣∣∣∣
(15.14)

In general, we can express the determinant of A as

|A| =
n∑
i=1

aijCij (15.15)

where Cij is the cofactor of aij , which is

Cij = (−1)i+j |Aij | (15.16)

and Aij is the submatrix formed by deleting row i and column j from A. One can also
show that if h 6= k, then

n∑
j=1

ahjCkj = 0 and
n∑
i=1

aihCik = 0 (15.17)

The left equation says that the sum of the elements from the h-th row times the cofactors
from the k-th row is zero. The right equation is about columns.

We can combine equations (15.15) and (15.17) in the form

n∑
j=1

ahjCkj = |A|δhk and
n∑
i=1

aihCik = |A|δhk (15.18)

The following is an example of evaluating the determinant of a 3× 3 matrix.∣∣∣∣∣∣
2 −1 6
4 1 2
3 5 7

∣∣∣∣∣∣ = 2×
∣∣∣∣ 1 2

5 7

∣∣∣∣− 4×
∣∣∣∣ −1 6

5 7

∣∣∣∣+ 3×
∣∣∣∣ −1 6

1 2

∣∣∣∣
= 2(1× 7− 5× 2)− 4(−1× 7− 5× 6) + 3(−1× 2− 1× 6)
= −6 + 148− 24
= 118

Chapter 15 Principal Component Analysis 7

Matrix Inverse

We denote I = (δij) as an n × n identity matrix, where δij is a Kronecker delta. That
is,

I =



1 0 ... 0

0 1 0.. 0

.

0 0 ..0 1

 (15.19)

We define the inverse of an n× n matrix A as a square matrix A−1 such that

AA−1 = I (15.20)

A square matrix A has an inverse iff its determinant |A| 6= 0. We say that a matrix is
nonsingular or invertible if its inverse exists.

We can obtain the inverse of A from the adjoint (matrix) of A, denoted as Aadj , which
is defined as the transpose of the cofactor matrix Cij . That is,

Aadj = (Cij)T =



C11 C21 ... Cn1

C12 C22 .. Cn2

.

C1n C2n .. Cnn

 (15.21)

From (15.18), we have
AAadj = |A|I (15.22)

Therefore, if |A| 6= 0, the inverse of A is given by

A−1 =
1
|A|

Aadj (15.23)

For a 2× 2 matrix

A =
(
a b
c d

)
(15.24)

its adjoint is

Aadj =
(

d −b
−c a

)
(15.25)

So the inverse is

A−1 = 1
|A|

(
d −b
−c a

)
= 1
ad− bc

(
d −b
−c a

) (15.26)

8 Matrix Algebra

As an example, let us find the inverse of the 3× 3 matrix

A =

 2 1 3
2 4 0
1 2 1


In this example, |A| = 6, and

C11 =
∣∣∣∣ 4 0

2 1

∣∣∣∣ = 4, C12 = −
∣∣∣∣ 2 0

1 1

∣∣∣∣ = −2, C13 =
∣∣∣∣ 2 4

1 2

∣∣∣∣ = 0, · · ·

and so on. So we have

A−1 =
1
|A|

Aadj =
1
6

 4 5 −12
−2 −1 6
0 −3 6

 =


2
3

5
6 −2

− 1
3 − 1

6 1

0 − 1
2 1


The following are some properties of matrix inverses:

1. If A and B are n × n matrices, we say that B is similar to A if there exists a
nonsingular matrix S such that B = S−1AS. Obviously, if B is similar to A, then
A is similar to B as A = U−1BU , where U = S−1.

2. If matrices A and B are invertible, then their product AB is also invertible and is

(AB)−1 = B−1A−1

3. A diagonal matrix has an inverse if no diagonal element is zero:

If Λ =


λ1 0 ·· 0
0 λ2 ·· 0
· ·· · ·
0 ·· 0 λn

 then Λ−1 =


1
λ1

0 ·· 0
0 1

λ2
·· 0

· ·· · ·
0 ·· 0 1

λn


where λi 6= 0.

4. If A is an n×m matrix, then AAT is n× n and is a symmetric square matrix.

5. An orthogonal matrix is a square matrix with orthogonal unit column and row vec-
tors vi (i.e., orthonormal vectors where vi ·vj = δij). One can show that a matrix A
is orthogonal if and only if its transpose is equal to its inverse:

AT = A−1

or

AAT = ATA = I

Chapter 15 Principal Component Analysis 9

Left inverse

If A is a nonsingular square matrix, it has a 2-sided inverse, A−1 for which AA−1 =
I = A−1A. This is what we have called the inverse of A. If A is m× n and m 6= n, then
it does not have a 2-sided inverse, but it can have a left inverse or a right inverse which are
referred to as pseudoinverse.

If A is m× n with full column rank (i.e. r = rank(A) = n,m > n), the matrix ATA
is an invertible n × n symmetric matrix. Therefore, (ATA)−1ATA = I . We can define
the left inverse of A to be

A−1
left = (ATA)−1AT

as A−1
leftA = I .

Note that AA−1
left is an m ×m matrix which equals the identity matrix only if m = n.

Actually,
P = AA−1

left = A(ATA)−1AT

is the matrix that projects <m onto the column space of A. This is the closest we can get
to the matrix product AB = I .

Right inverse

Similarly, if A is m × n with full row rank (i.e. r = rank(A) = m,m < n), we can
define its right inverse. In this case, AAT is an invertible m ×m symmetric matrix. So,
AAT (ATA)−1 = I . The right inverse of A is

A−1
right = AT (AAT)−1

as AA−1
right = I .

Also note that A−1
rightA is an n × n matrix which equals the identity matrix only if

m = n. The matrix
P = A−1

rightA = AT (AAT)−1A

projects <n onto the row space of A. It is as close as we can get to the matrix product
BA = I .

Pseudoinverse

An m× n matrix A has a left inverse if it is with full column rank (r = rank(A) = n)
and has a right inverse if it is with full row rank (r = rank(A) = m). The left inverse or
the right inverse of a matrix is a pseudoinverse. If A has rank r < min(m,n), then we
need to consider the general pseudoinverse.

We can define the pseudoinverseA+ ofA as the matrix for whichA+A gives an identity
operation on any row vector x, i.e. x = A+Ax.

To find the pseudoinverse of A, we can start from the singular value decomposition,

A = UΣV T

where Σ is an m× n matrix with zero entry values except the first r row diagonal entries,
which have nonzero values denoted by σ1, σ2, · · ·, σr. It is easy to find the inverses for

10 Standard Deviation

U and V as they are orthonormal. So we only need to find the pseudoinverse for Σ. The
best we can get to an inverse for Σ is an n × m matrix Σ+ which has nonzero elements
σ1, σ2, · · ·, σr along the diagonal in the first r rows. The pseudoinverse for A is

A+ = (UΣV T)+ = (V T)−1Σ+U−1 = V Σ+UT

as U and V are orthogonal matrices and thus U−1 = UT and V −1 = V T .

15.3 Discrete Data Sets

In science and engineering, we often encounter problems involving a large set of data. We
would like to know whether the data set could be characterized by a few parameters and
whether there are any correlations among the data. These can be analyzed using tools of
discrete probability theory, which is a branch of statistics and deals with events that occur
in countable sample spaces.

15.3.1 Standard Deviation

Standard deviation of a data set shows the degree of variation (or dispersion) from the
average (mean, or expected value) of the data. A low standard deviation indicates that the
data points tend to cluster near the mean, whereas a high standard deviation indicates that
the data spread out over a wide range of values.

Consider a set of data samples X with n elements:

X = {x1, x2, · · ·, xn} (15.27)

The mean (average) µ of X is given by

µ =
1
n

n∑
i=1

xi =
1
n

(x1 + x2 + · · ·+ xn) (15.28)

The standard deviation s of the data set is defined as

s =

√√√√ 1
n− 1

n∑
i=1

(xi − µ)2 (15.29)

The value var(X) = s2 is referred to as the variance. Note that the denominator in (15.29)
is n− 1 rather than n. People found that using n− 1 in the formula of finding the standard
deviation of a data sample set gives results closer to our intuition of of the dispersion of the
data. However, if one calculates the standard deviation of the whole population of the data,
one should use n in the denominator of the formula and the mean is usually denoted as σ:

σ =

√√√√ 1
n

n∑
i=1

(xi − µ)2 (15.30)

and the variance is σ2.

Chapter 15 Principal Component Analysis 11

15.3.2 Covariance and Correlation

Standard deviation is useful for analyzing data sets that are ‘one dimensional’ such as the
heights or the ages of individuals of a nation. In many situations, we want to look at the
correlation between two ‘one dimensional’ data sets such as the relation between cancer
rate and the body weights of individuals. Covariance provides a good measure of this kind
of correlation.

Consider two sample data sets, X and Y . The size of each set is n:

X = {x1, x2, · · ·, xn}
Y = {y1, y2, · · ·, yn}

Suppose µX and µY are the means of X and Y respectively. We can define the covariance
for these two sample data sets as

cov(X,Y) =
1

n− 1

n∑
i=1

(xi − µX)(yi − µY) (15.31)

Note that if X = Y , the covariance is reduced to the variance. Also, cov(X,Y) =
cov(Y,X).

Another quantity that closely relates to covariance is correlation. Suppose we consider
the two data sets X ′, and Y ′ obtained by subtracting the means µX and µY from the
elements of X and Y respectively so that their means are 0. We can imagine that X ′ and
Y ′ represent two vectors, X and Y. The correlation between these two vectors is the cosine
of the ‘angle’ θ between these two vectors:

cor(X,Y) = cos θ =
X ·Y
||X|| ||Y||

(15.32)

where ||X||, and ||Y|| are the norms (magnitudes) of the vectors, and

X ·Y =
n∑
i=1

xiyi

If cos θ = 1, the two vectors are ‘pointing in the same direction’, which means that the two
data sets are perfectly correlated. If cos θ = 0, the two vectors are perpendicular, meaning
that they are totally uncorrelated. Equation (15.32) can be expressed in the statistical form:

cor(X,Y) =

n∑
i=1

(xi − µX)(yi − µY)

(n− 1)sXsY
(15.33)

where sX and sY are the standard deviations of X and Y respectively.

15.3.3 Correlation and Covariance Matrices

Covariance is a measure for two one-dimensional data sets. (Unless otherwise stated, in
this section we refer to a set of data as a one-dimensional data set.) If we have more than
two data sets, we can calculate the covariance values of different data set pairs and put them

12 Correlation and Covariance Matrices

in a matrix, which is referred to as a covariance matrix. For example, if we have 3 data sets,
X,Y , and Z, we could calculate cov(X,Y), cov(Y,Z), cov(Z,X). For n data sets, there
are
(
n
2

)
covariance values. Another statistical quantity that closely relates to covariance

matrix is the correlation matrix.
Let us consider a simple example to illustrate these concepts. Suppose we want to find

out how closely blood sugar and cholesterol levels for a group of obese kids correlate with
body weights. The data measured in relative units are shown in Table 15-1 below.

Table 15-1 Health Data of Kids
Person Weight X = (xi) Cholesterol Y = (yi) Blood Sugar Z = (zi)

P1 198 200 196
P2 160 165 165
P3 158 158 133
P4 150 165 91
P5 175 182 151
P6 134 135 101
P7 152 136 80

Mean µX = 161 µY = 163 µZ = 131

We would like to measure obesity compared between each set of blood sugar level data
or cholesterol level. We compute the deviations of each set of data from the means,and put
the values in a matrix:

D =



37 37 65
−1 2 34
−3 −5 2
−11 2 −40

14 19 20
−27 −28 −30
−9 −27 −51


(15.34)

The column vectors of D represent the deviations from the mean for each of the three sets
of data. The mean for each column vector of D is 0; the first column represents (xi−µX),
the second column is (yi − µY), and the third column is (zi − µZ). We can now easily
calculate the covariance between two data sets. For example, cov(X,Y), the covariance
of X and Y is the dot product of the first two colum vectors divided by n − 1, n being
the number of rows. The square of the first column vector is essentially the variance of X ,
which is equal to cov(X,X). The covariance matrix C of this problem is a matrix in the
form:

C =

 cov(X,X) cov(X,Y) cov(X,Z)
cov(Y,X) cov(Y, Y) cov(Y,Z)
cov(Z,X) cov(Z, Y) cov(Z,Z)

 (15.35)

From the definition of covariance of (15.31) and the properties of matrix multiplication, we
can express the covariance matrix as

C =
1

n− 1
DTD (15.36)

Evaluating all the covariance values using the data of (15.34), we obtain the covariance

Chapter 15 Principal Component Analysis 13

matrix:

C = 1
6

 37 −1 −3 −11 14 −27 −9
37 2 −5 2 19 −28 −27
65 34 2 −40 20 −30 −51




37 37 65
−1 2 34
−3 −5 2
−11 2 −40

14 19 20
−27 −28 −30
−9 −27 −51


=

 417.7 437.5 725.7
437.5 546.0 830.0
725.7 830.0 1814.3


(15.37)

The diagonal entries of C are the variances of the three data sets, X , Y , and Z. The
off-diagonal entries are the covariances.

We can also calculate the corresponding correlation matrix R = (rij) from D. Suppose
di is the i-th column vector of D. From (15.31) or (15.32), the (i, j)-th entry of R is given
by

rij =
di · dj

||di|| ||dj||
i, j = 1, 2, 3 (15.38)

In this example,

R =

 1.000 0.916 0.834
0.916 1.000 0.834
0.834 0.834 1.000

 (15.39)

The three sets of data in our example are all positively correlated, because all entries in R
are positive. This means that obesity, cholesterol level and blood sugar level of a kid are all
correlated. A value of 0 would mean that the vectors are orthogonal and are uncorrelated.
A negative value would mean that the two data sets are negatively correlated. In image
and speech problems, the data are usually highly correlated. Note that both C and R are
symmetric.

In this example, we have considered three sample data sets X , Y , and Z. Each of them
can be regarded a 1-dimensional data set. We can also group the data together to form one
data set, say S. This newly formed data set S, consisting ofX , Y , and Z, is 3-dimensional.
If there is strong correlation between X , Y , and Z, we may be able to predict one from the
other, and the dimension of the data set S can be reduced.

15.4 Eigenvectors and Eigenvalues

To understand eigenvectors, we first consider operations in 2D Euclidean space. A trans-
formation is represented by a 2× 2 matrix and a vector is a 2× 1 matrix. A transformation
of a vector can be described by the multiplication of a transformation matrix and the vector,
which gives us a new vector. Consider the example,(

1 2
3 4

)(
1
1

)
=
(

3
7

)
(15.40)

In this example, like most transformations, we cannot express the resulted vector
„

3
7

«
,

as a scalar multiple of the original vector
„

1
1

«
.

14 Eigenvectors and Eigenvalues

Now consider another example with a 2× 2 transformation matrix A and a 2× 1 vector
v:

Av =
(

7 2
3 8

)(
−1

1

)
=
(
−5

5

)
= 5

(
−1

1

)
(15.41)

In this example, the resulted vector
„
−5

5

«
can be expressed as 5 times the original vector

v =
„
−1

1

«
. This means that the transformed vector Av points in the same direction as

the original vector v. The vector v (and any scalar multiple of it, λv) is an eigenvector of
the transformation matrix A; the scalar multiple λ is an eigenvalue of the transformation.
We can formally define these quantities as follow.

Suppose A is an n × n matrix. We call a scalar λ an eigenvalue or a characteristic
value of A if there exists a nonzero vector v such that Av = λv. We call the vector
v an eigenvector or a characteristic vector belonging to λ.

The equation Av = λv can be expressed in the form

(A− λI)v = 0 (15.42)

where 0 is the zero vector whose entries are all equal to zero. Therefore, λ is an eigenvalue
of A if and only if (15.42) has a nontrivial solution, which is true if and only if A − λI is
singular (otherwise we can multiply (15.42) by the inverse and get v = 0), or equivalently,
its determinant is zero:

|A− λI| = 0 (15.43)

If we expand |A− λI|, we obtain an nth degree polynomial in λ:

p(λ) = |A− λI| = c0 + c1λ+ · · ·+ cnλ
n (15.44)

We call this polynomial the characteristic polynomial, and equation (15.43) the character-
istic equation, for the matrix A. The eigenvalues of A are the roots of the characteristic
equation. An eigenspace of A is the set of all eigenvectors with the same eigenvalue, to-
gether with the zero vector.

Here is a summary of the properties of eigenvectors and eigenvalues:

1. Eigenvectors can only be found for square matrices.
2. Not every square matrix has eigenvectors.
3. Given an n× n matrix that does have eigenvectors, there are n of them; some of the

eigenvalues may be complex numbers. So a 3× 3 matrix has 3 eigenvectors.
4. The eigenvectors of a symmetric matrix (i.e. A = AT) are ‘perpendicular’ to each

other. That is, they are at right angles to each other. The mathematical term for
‘perpendicular’ is orthogonal.

5. People are more interested to find eigenvectors with unit lengths. The unit eigenvec-
tors of a symmetric matrix may form an orthonormal basis of a coordinate system.

Example 15.1

Find the eigenvalues and corresponding eigenvectors of the matrix

A =
(

4 3
−2 −1

)

Chapter 15 Principal Component Analysis 15

Solution

The characteristic equation is∣∣∣∣ 4− λ 3
−2 −1− λ

∣∣∣∣ = 0 or λ2 − 3λ+ 2 = 0 (15.45)

The eigenvalues ofA are the roots of equation (15.45), which are λ1 = 1 and λ2 = 2.
To find the eigenvector belonging to λ1 = 1, we need to solve for v of equation
(15.42). That is,

(A− λ1I)v = 0 or

(
3 3
−2 −2

)(
v1
v2

)
=
(

0
0

)
(15.46)

From this, we obtain the duplicate equations:

3v1 + 3v2 = 0
−2v1 − 2v2 = 0 (15.47)

which can be reduced to
v1 + v2 = 0 (15.48)

If we let v2 = t, then v1 = −t. Therefore e1 =
(
−1

1

)
is an eigenvector of A

belonging to λ1 = 1. Actually, all multiples of e1 are eigenvectors of A for λ1. We
can claim that e1 is the basis of the eigenspace corresponding to λ1 = 1.
Similarly, with λ2 = 2, we have the duplicate equations,

2v1 + 3v2 = 0
−2v1 − 3v2 = 0 (15.49)

An eigenvector of A for λ2 is es =
(
−3

2

)
. The corresponding eigenspace for

λ2 = 2 is given by the span of e2.

For matrices with higher dimensions, we can solve for the eigenvectors using Gaussian
elimination.

Consider another example, where A is a 3× 3 symmetric matrix:

A =

 3 2 4
2 0 2
4 2 3


The roots for |A − λI| = 0 are λ1 = −1, λ2 = −1, and λ3 = 8. The corresponding
eigenvectors are:

v1 =

 1
−2

0

 , v2 =

 4
2
−5

 , v3 =

 2
1
2


The eigenvectors v1,v2, and v3 are orthogonal to each other, which is a consequence of
the property of a symmetric matrix mentioned above. For example, v2 · v3 = 4× 2 + 2×
1 + (−5)× 2 = 0.

16 Eigenvectors and Eigenvalues

Suppose we express the eigenvectors as row vectors ei’s and normalize them to unit
vectors, i.e., ei = vT

i /|vi|. Then we have

e1 = 1√
5

(1,−2, 0), e2 = 1
3
√

5
(4, 2,−5), e3 = 1

3(2, 1, 2)

which form an orhtonormal basis (i.e., ei · ej = δij). We can form an orthogonal matrix
(see definition above) P using the basis vectors:

P =

 e1

e2

e3

 =
1

3
√

5

 3 −6 0
4 2 −5

2
√

5
√

5 2
√

5

 =

 0.45 −0.89 0.00
0.60 0.30 −0.75
0.67 0.33 0.67


As P is an orthogonal matrix, its inverse is given by its transpose:

P−1 = PT =

 0.45 0.60 0.67
−0.89 0.30 0.33
0.00 −0.75 0.67


We will see in the next section that P can be viewed as a projection matrix. If B is a
3 × n matrix, the operation PB is to ‘project’ the n column vectors of B onto the new
orthonormal basis, e1, e2, and e3.

One can regard that such an operation is a rotation of a 3D coordinate system. The
operation of P−1 is to rotate the coordinate system to the new basis. Imagine that a solid
object consists of n vertices and their original coordinates are given by the column vectors
of B. The values of vertices in the rotated coordinate system are given by the columns of
PB. Figure 15-3 below shows the original basis (x, y, z), the new basis (e1, e2, e3) and
the 8 vertices of a cube centered at the origin with length 0.2. By applying appropriate
rotations about the axes x, y, and z, we can rotate (x, y, z) onto (e1, e2, e3). The columns
of matrix B, which is now 3× 8, are the coordinates of the 8 cube vertices:

B =

 −0.1 0.1 0.1 −0.1 0.1 0.1 −0.1 −0.1
−0.1 −0.1 0.1 0.1 −0.1 0.1 0.1 −0.1

0.1 0.1 0.1 0.1 −0.1 −0.1 −0.1 −0.1


Each column of the matrix productPB represents a vertex of the cube in the new coordinate
system. Another interpretation of PB is that we rotate the cube and the PB columns are
the vertex values of the rotated cube in the original coordinate system. This is shown in
Figure 15-4. The rotated cube vertices are given by:

B′ = PB =

 0.05 0.13 −0.05 −0.13 0.13 −0.05 −0.13 0.05
−0.16 −0.05 0.02 −0.10 0.10 0.16 0.05 −0.02
−0.03 0.10 0.17 0.03 −0.03 0.03 −0.10 −0.17


Each column is a vertex.

Chapter 15 Principal Component Analysis 17

Figure 15-3 Eigenvectors Forming New Basis

Figure 15-4 Rotated Cube with Vertex Values Given by PB

18 Principal Component Analysis

15.5 Principal Component Analysis

Principal Component Analysis (PCA) was invented by Karl Pearson in 1901, and was later
popularized by Harold Hotelling. PCA is a useful tool for analyzing high dimension data
sets. It is effective for pattern search, dimensionality reduction, lossy data compression,
feature extraction, and data visualization. Actually, PCA is a simple case of the eigenvector-
based multivariate analysis. It also closely relates to factor analysis, which is a statistical
method useful for reducing the number of variables in gathering data.

The goal of PCA is to identify the most meaningful basis to re-express a data set, hop-
ing that the new basis will filter out the noise and reveal hidden structures. The technique
uses an orthogonal transformation to convert a multi-dimension data set to a set of values
of linearly uncorrelated variables called principal components. The number of principal
components is less than or equal to the dimension of the original data set. We setup the
transformation in such a way that the first principal component has the largest possible
variance and each succeeding component is orthogonal to (i.e. uncorrelated with) the pre-
ceding components and in turn has the largest subsequent variance. In the process, we want
to answer the question: Can we find another basis, which can be expressed as a linear com-
bination of the original basis, that best re-expresses our data set?

Suppose A is the original data set arranged as an m×n matrix. Suppose P is an m×m
matrix that transforms A to another m× n matrix B. That is,

PA = B (15.50)

Suppose ai and bi are the i-th column vectors of A and B, and pi is i-th row vector of
P . We can interpret {p1, · · ·,pm} as a set of new basis vectors for expressing the column
vectors of A:

PA =


p1

·
·

pm

(a1, · · ·, an

)
=


p1 · a1, · · ·, pn · an,
· · · · ·
· · · · ·

pm · a1, · · ·, pm · an,

 = B (15.51)

We can see that a column vector bi of B has the form:

bi =


p1 · ai

·
·

pm · ai

 (15.52)

We recognize that each component of the vector bi is a dot-product of ai with the corre-
sponding row in P . In another perspective, the k-th component of bi is a projection on to
the k-th row of P . We can therefore interpret the rows of P as a new set of basis vectors
for representing the column vectors of A. This concept has been illustrated in the example
of the previous section. The row vectors pi‘s become the principal components of A. The
question that remains is how to make a good choice of P to best re-express A? In a 2 vari-
able case, we may use the least-square fitting method to find the line that best-fits the data.
How do we quantify and generalize these notions to arbitrarily higher dimensions? The
PCA technique makes use of covariance matrix and eigenvectors to address this question.
The PCA technique is discussed below. We only present the steps of using PCA to find the
best basis but we omit the proofs of some statements we claim to be true based on some
simple examples.

Chapter 15 Principal Component Analysis 19

15.5.1 PCA Procedures

Calculate the Deviation Matrix

The first step of the PCA procedures is to subtract the mean from the data for each of the
data dimensions. Suppose we use the 3 dimensional health data for a group of kids of Table
15-1 above as example. After the subtraction, we obtain the deviation matrixD of equation
(15.34). The new mean for each column vector (data of each dimension) of D is 0.

Calculate the Covariance Matrix

The second step is to calculate the covariance matrix, which is given by equation (15.36).
(Alternatively, one can use the correlation matrix in the process.) In our example, m =
3, n = 7, and the covariance matrix is

C =
1

n− 1
DTD =

 417.7 437.5 725.7
437.5 546.0 830.0
725.7 830.0 1814.3

 (15.53)

Note that a covariance matrix is always symmetric (i.e. CT = C). Therefore, the eigen-
vectors of a covariance matrix are always orthogonal.

Calculate Eigenvectors

The next step is to calculate the eigenvalues and eigenvectors of the covariance matrix. We
have discussed in the previous section how to find eigenvalues and eigenvectors of low-rank
matrices. For the symmetric covariance matrix C of (15.53), the eigenvalues are:

λ1 = 39.57, λ2 = 180.29, λ3 = 2558.14

The corresponding normalized eigenvectors are:

e1 = (0.770, −0.638, −0.016)
e2 = (0.522, 0.644, −0.559)
e3 = (0.367, 0.422, 0.829)

(15.54)

The eigenvectors of (15.54) have been normalized (i.e. length = 1) and are orthogonal.
Therefore, the vectors {e1, e2, e3} are orthonormal. The projection matrix P and data
matrix A of (15.50) are given by

P =

 e1

e2

e3

 and A = DT (15.55)

So

B = PA =

 e1

e2

e3

(a1, · · ·, a7

)
(15.56)

The square projection matrix of (15.55) is composed of unit row vectors which are or-
thogonal to each other. Therefore, it is an orthogonal matrix. As mentioned above, an

20 PCA Procedures

important property of an orthogonal matrix is that its inverse is equal to its transpose (i.e.
P−1 = PT).

Figure 15-5 below shows a plot of the adjusted data (mean subtracted) of X , Y , and
Z of Table 15-1 and the eigenvectors. The axes labeled 1, 2, and 3 correspond to the
eigenvectors for eigenvalues λ1, λ2, and λ3 respectively.

From the figure, we see that most data points cluster around the axis of λ3, which is the
largest eigenvalue. When we project the data onto this axis, we’ll get large values. So one
should choose this axis to be the principal axis of the new basis. The axis of λ2 has the
second largest eigenvalue and it has less data points cluster around it. The axis of λ1 has
a much smaller eigenvalue and there is hardly any data point cluster around it. When we
project the data onto this axis, we get values close to zero. From this simple example, we
can see that the larger the eigenvalue, the more important the corresponding eigenvector is
and the ones with the largest eigenvalues should be chosen as the principal components.
It turns out that one can prove that this is generally true. The eigenvectors of the highest
eigenvalues are the principal components of the data set.

Figure 15-5 A Plot of Data of D of (15.34) and the Eigenvectors

Choosing Components

In general, once eigenvectors have been found from the covariance matrix, we order them
according to their eigenvalues, from highest to lowest. This gives us the components in
order of significance. At this point, if necessary we can discard the components of lesser
significance, which may result in loss of some information, but if the eigenvalues are small,
the loss is not significant. If we discard some components, the final data set is of lower di-
mension as compared to the original one. (As a consequence, PCA can be used in lossy

Chapter 15 Principal Component Analysis 21

data compression.) We obtain a lower dimension projection matrix by keeping the remain-
ing eigenvectors. In our example, we can form a matrix F , for example, by throwing away
e1 and keeping only e2 and e3:

F =
(

e3

e2

)
Each vector ei of F is sometimes called a feature vector because it is chosen to represent
some characteristics or attributes of the original data set while still only partially describing
it.

Deriving New Data Set

A new data set with reduced dimension is obtained by projecting the original data onto the
principal axes. This is achieved by multiplying the feature vector matrix F by the matrix
A that contains the deviation data (A = DT). Suppose the new data matrix is B, then

B = FA =
(

0.367 0.422 0.829
0.522 0.644 −0.559

)(37 −1 −3 −11 14 −27 −9
37 2 −5 2 19 −28 −27
65 34 2 −40 20 −30 −51

)
=
(

83.078 28.663 −1.553 −36.353 29.736 −46.595 −56.976
6.807 −18.240 −5.904 17.906 8.364 −15.356 6.423

)
(15.57)

The projection of (15.57) basically transforms our data so that they are expressed in terms
of the lines where data tend to cluster around them.

Recovering Data Set

The transformation of (15.57) is a lossy transformation as we have thrown away one eigen-
vector. We cannot recover the exact original data from the transformed data. On the other
hand, the transformation using P of (15.55) is lossless and reversible. If B = PA, then
A = P−1B. Since P is an orthogonal matrix, P−1 = PT . So

A = PTB (15.58)

We can use this equation to recover the exact data transformed by P . However, if we have
thrown away some components and the feature matrix F of (15.57) is not the same as the
projection matrix P , we cannot recover the exact data. Also, in this case F is not a square
matrix and does not have an inverse. Of course, the ‘recovered’ data will not be identical
to that of the original set.

Without going into details of proving, we claim that the ‘recovered’ data can be approx-
imated by FTB. In this example, F is 2 × 3. So FT is 3 × 2 and the ‘recovered’ data set
is

A′ = FTB =
(

eT
3 , e

T
2

)
B

=

(
0.367 0.522
0.422 0.644
0.829 −0.559

)(
83.08 28.66 −1.55 −36.35 29.74 −46.60 −56.96
6.80 −18.24 −5.904 17.91 8.36 −15.36 6.42

)
=

(
34.81 1.00 −3.65 −3.99 16.05 −25.12 −17.56
38.80 0.35 −4.46 −3.81 17.30 −29.55 −19.91
65.05 33.96 2.01 −40.15 19.96 −30.04 −50.82

)
(15.59)

22 Eigenvectors by Jacobi Method

Figure 15-6 shows a plot of the recovered data of (15.59) along with the original data and
eigenvectors of Figure 15-5; the recovered data points are shown as black square dots. The
recovered data here are the deviation data. If we want to get back the very original data of
Table 15-1, we need to add the means µX , µY , and µZ accordingly to the recovered data
of (15.59).

Figure 15-6 Recovered Data of Figure 15-5

15.6 Eigenvectors by Jacobi Method

We have discussed how to find egeinvalues and eigenvectors of a square matrix by solving
a characteristic equation. This method works well for low-rank matrices as illustrated
in the examples of section 15.4. However, for a large data set that involves large-size
matrices, it is impractical to find eignevectors by solving characteristic equations. Instead,
numerical methods are employed to find the eigenvectors and eigenvalues. There are a
few popular numerical methods that can be used to give a general solution to the problem.
However, here we are not interested in the general solutions of finding eigenvectors of a
square matrix. We are interested in the problem of finding eignevectors of a symmetric
matrix as a covariance matrix is always symmetric. The solution to such a problem is a
lot simpler as compared to solving the general problem. Again various numerical methods
exist. The one that we will discuss is called the Jacobi Method, which diagonalizes a square
symmetric matrix to obtain eigenvalues and eigenvectors.

We have discussed that a symmetric matrix is diagonalizable. Finding eigenvalues and
eigenvectors of a diagonal matrix is trivial. For example, if A is a 3× 3 diagonal matrix, it

Chapter 15 Principal Component Analysis 23

is in the form

A =

 a11 0 0
0 a22 0
0 0 a33

 (15.60)

The eigenvalues of this matrix are λ1 = a11, λ2 = a22, and λ3 = a33, and the eigenvectors
are

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 (15.61)

The eigenvectors obviously form an orthonormal basis. Note that here we express eigen-
vectors as column vectors rather than row vectors as we did in the previous section.

The idea of the Jacobi method is to transform iteratively a symmetric matrix A to a
diagonal form through a sequence of ‘rotations’, which transform the original basis to the
orthonormal basis formed by the eigenvectors of A. This concept can be visualized using
an example of a 2D matrix as shown in Figure 15-7 below.

Figure 15-7 Rotating Orthonormal X-Y Basis to Orthonormal e1-e2 Basis

The ‘rotations’ are elementary orthogonal transformations that are often called Jacobi ro-
tations, and have the form

U(p, q, φ) =



1 0 · · · · · 0
0 1 0 · · · · 0
· · · · · ·
· · cos φ sin φ · · · 0
· · · 1 · ·
· · −sin φ cos φ · · · 0
· · · · · ·
0 0 · · · · · 1


(15.62)

The diagonal elements of U(p, q, φ) = (uij) are all 1 except the two elements at rows and
columns p and q, which are equal to cos φ (i.e. upp = uqq = cos φ). All off-diagonal
elements are 0 except upq = sin φ, and uqp = −sin φ. Obviously, this matrix is orthogonal
as sin2φ+ cos2φ = 1.

24 Eigenvectors by Jacobi Method

Starting with a symmetric matrix A0, in the k-th step of Jacobi rotations, a rotation
matrix Uk = Uk(p, q, φ) of the form (15.62) is used to transform the matrix Ak to Ak+1:

Ak+1 = UTk AkUk (15.63)

The composite Jacobi rotations approximate the operation

A→ D = V TAV (15.64)

where D is a diagonal matrix and V is orthogonal, D being the limit of Ak when k →∞;
the matrix V is the product of all Jacobi rotations:

V = U0U1U2 · · · (15.65)

Suppose we letA = Ak, A
′ = Ak+1, and U = Uk(p, q, φ). We can then express (15.63)

as
A′ = UTAU (15.66)

The operation UTA only changes rows p and q of A, while AU only changes columns p
and q. Therefore, only the elements of rows p and q, and columns of p and q of A will be
changed in (15.66). The new matrix A′ is of the form

A′ =



a11 · · · a′1p ·· a′1q ·· a1n

· · · · · · ·
· · · · · · ·
a′p1 · · · a′pp ·· a′pq ·· a′pn
· · · · · · ·
a′q1 · · · a′qp ·· a′qq ·· a′qn
· · · · · · ·
· · · · · · ·
an1 · · · a′np ·· a′nq ·· ann


(15.67)

Multiplying out (15.66) and using the special form of U , we obtain the explicit formulas
for the elements of A′:

a′rp = arpcos φ− arqsin φ r 6= p, r 6= q (15.68a)
a′rq = arqcos φ+ arpsin φ r 6= p, r 6= q (15.68b)

a′pp = appcos 2φ+ aqqsin 2φ− 2apqsin φ cos φ (15.68c)

a′qq = appsin 2φ+ aqqcos 2φ+ 2apqsin φ cos φ (15.68d)

a′pq = apq(cos 2φ− sin 2φ) + (app − aqq)sin φ cos φ (15.68e)

The idea of the Jacobi method is to make the off-diagonal elements of A to become 0
through rotations. That is, we want the term a′pq in (15.68e) to be 0. As a consequence, we
obtain the equation

0 = apqcos 2φ+ (app − aqq)
1
2

sin 2φ (15.69)

from which we can solve for the rotation angle φ:

cot 2φ =
cos 2φ
sin 2φ

=
aqq − app

2apq
(15.70)

Chapter 15 Principal Component Analysis 25

where we have used the trigonometric identities cos 2φ = cos2φ − sin2φ, and sin 2φ =
2sin φcos φ. We can obtain φ from cot 2φ and calculate other trigonometric quantities in
(15.68). However, a simpler way is to solve for sin φ and cos φ directly from cot 2φ. If we
let t = tan φ, then

cot 2φ =
cos 2φ
sin 2φ

=
cos 2φ− sin 2φ

2sin φcos φ
=

1
2t
− t

2
(15.71)

We can rewrite (15.71) as
t2 + 2(cot 2φ)t− 1 = 0 (15.72)

The roots of the quadratic equation (15.72) are

t = −cot 2φ±
√

cot22φ+ 1 (15.73)

We should choose the smaller root which corresponds to a rotation angle less than π/4 in
magnitude. Such a choice at each iteration gives a stable reduction. This can be imple-
mented by the following java code segment:

double cot_2phi = (A[q][q] - A[p][p]) / (2 * A[p][q]);
double tan_phi;
double d = Math.sqrt (cot_2phi * cot_2phi + 1);
if (cot_2phi > 0)

tan_phi = -cot_2phi + d;
else

tan_phi = -cot_2phi - d;

Other trigonometric quantities in (15.68) can be then obtained from tan φ. By iterating
the equation of (15.63), we eventually obtain a diagonal matrix D = V TAV as shown in
equation (15.64). The diagonal elements of D give the eigenvalues of the original matrix
A. The column vectors of V are the eigenvectors of A as AV = D(V T)−1 = DV . They
can be computed by carrying out the same rotation operation as that on matrix A at each
iterative stage:

Vk+1 = UTk VkUk (15.74)

where initially, V0 is the identity matrix.
The following java class, JacobiCyclic shown in Listing 15-1 shows a full implementa-

tion of this method. The function eigenVs of this class takes an n × n symmetric matrix
A as a two dimensional array input. It returns n eigenvalues in the array evalues. The
function also returns n eigenvectors, each with dimension n in the 2D array evectors; each
eigenvector is a column vector of the array.

Program Listing 15-1: An Implementation of Finding Eigenvectors by Jacobi Method
——————————————————————————————————–

import java.io.*;

class JacobiCyclic {
private final static double eps = 1.0E-8;
private static double threshold;
private static double thresholdNorm;
private static double max;

// calculate eigenvalues and egienvectors
// returns n eigenvectors as column vectors in evectors[][]
// n eigenvalues are returned in evalues

26 Eigenvectors by Jacobi Method

static boolean eigenVs (int n, double [][] A,
double [] evalues, double [][] evectors)

{
if (n < 1) return false;
if (n == 1) {

evalues[0] = A[0][0];
evectors[0][0] = 1.0;
return true;

}
//start with identity matrix
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
if (i == j)

evectors[i][j] = 1.0;
else

evectors[i][j] = 0.0;
//calculate threshold and thresholdNorm
threshold = 0.0;
for (int i = 0; i < n - 1; i++)

for (int j = i + 1; j < n; j++) //consider upper triangle only
threshold += A[i][j] * A[i][j];

threshold = Math.sqrt (threshold + threshold);
thresholdNorm = threshold * eps;
max = threshold + 1.0;
while (threshold > thresholdNorm) {

threshold /= 10.0;
if (max < threshold) continue;
max = 0.0;
for (int k = 0; k < n - 1; k++) {

for (int m = k + 1; m < n; m++) {
if (Math.abs (A[k][m]) < threshold) continue;
//calculate angle of rotation to make A[k][m] 0
double cot_2phi = (A[k][k] - A[m][m]) / (2 * A[k][m]);
double tan_phi;
double t1, t2, t3;
double d = Math.sqrt (cot_2phi * cot_2phi + 1);
if (cot_2phi > 0)
tan_phi = -cot_2phi + d;

else
tan_phi = -cot_2phi - d;

double tan2_phi = tan_phi * tan_phi;
double sin2_phi = tan2_phi / (1.0 + tan2_phi);
double cos2_phi = 1.0 - sin2_phi;
double sin_phi = Math.sqrt(sin2_phi);
if (tan_phi < 0.0) sin_phi = - sin_phi;
double cos_phi = Math.sqrt(cos2_phi);
double sin_2phi = 2.0 * sin_phi * cos_phi;
double cos_2phi = cos2_phi - sin2_phi;
t1 = A[k][k];
t2 = A[m][m];
t3 = A[k][m];
A[k][k] = t1 * cos2_phi + t2 * sin2_phi + t3 * sin_2phi;
A[m][m] = t1 * sin2_phi + t2 * cos2_phi - t3 * sin_2phi;
A[k][m] = A[m][k] = 0;
for (int i = 0; i < n; i++){
if (i == k || i == m) continue;
if (i < k)
t1 = A[i][k];

else
t1 = A[k][i];

Chapter 15 Principal Component Analysis 27

if (i < m)
t2 = A[i][m];

else
t2 = A[m][i];

t3 = t1 * cos_phi + t2 * sin_phi;
if (i < k)
A[i][k] = t3;

else
A[k][i] = t3;

t3 = - t1 * sin_phi + t2 * cos_phi;
if (i < m)
A[i][m] = t3;

else
A[m][i] = t3;

} //for i

for (int i = 0; i < n; i++) {
t1 = evectors[i][k];
t2 = evectors[i][m];
evectors[i][k] = t1 * cos_phi + t2 * sin_phi;
evectors[i][m] = -t1 * sin_phi + t2 * cos_phi;

}
} //for m
for (int i = 0; i < n; i++) {

if (i == k) continue;
else if (max < Math.abs (A[k][i]))
max = Math.abs (A[k][i]);

}
} // for k

} //while
for (int i = 0; i < n; i++)

evalues[i] = A[i][i];

return true;
}

}

——————————————————————————————————

28 Eigenvectors by Jacobi Method

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth.

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

An Introduction to 3D Computer Graph-
ics, Stereoscopic Image, and Anima-
tion in OpenGL and C/C++

by Fore June

November 2011
ISBN-13: 978-1466488359

	Chapter 15 Principal Component Analysis
	15.1 Introduction
	15.2 Matrix Algebra
	15.3 Discrete Data Set
	15.3.1 Standard Deviation
	15.3.2 Covariance and Correlation
	15.3.3 Correlation and Covariance Matrices

	15.4 Eigenvectors and Eigenvalues
	15.5 Principal Component Analysis
	15.5.1 PCA Procedures

	15.6 Eigenvectors by Jacobi Method

