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Chapter 16 Active Shape Models (ASMs)

16.1 Introduction

Active shape models (ASMs) are statistical models for image processing and recognition,
developed by Tim Cootes and Chris Taylor in the 1990s. ASM closely relates to the active
appearance model (AAM), which is also known as a smart snake method. The formal
name for snake model is active contour model.

A real-world image often consists of complex objects. Two image objects representing
the same real-world object may vary in appearance and shape from one image to another.
It is an inherent difficult task to recognize the existence of certain structures in an image.
There are a lot of studies and methods of locating known objects in images. The method of
using rigid models to represent image objects is well established. However, in many prac-
tical situations rigid models are not appropriate because objects of the same class are not
identical. For example, in medical applications, the shape of organs may vary significantly
through time and between individuals. In many industrial image processing applications,
the images may involve assemblies with moving parts, and/or components with varying
appearance. In such cases, we have to use flexible models, or deformable templates to
allow for some degree of variability in the shape of the imaged objects. One may use
trigonometric functions such as sin and cos to describe shapes. By varying the parameters
and the number of terms used in a trigonometric series, one can generate different shapes.
However, such methods are not suitable for describing general shapes. For example, us-
ing a finite number of terms, we can define a square corner only approximately. There is
no clear relationship between variations in shape and variations in the parameters of the
trigonometric expansion.

Utilizing models that cope with the variability, ASMs are able to remedy the defects of
rigid models and are able to identify complex objects and special features of an image, and
find examples of the structures that they represent.

An active shape model makes use of a set of annotated images of typical examples to
build a statistical model of appearance. It requires one to first decide upon a suitable set of
points (landmarks) to describe the shape of the target; the landmarks should be found reli-
ably on each training image. The set of points representing each object or image structure
may represent boundaries, internal features, or even external structures, such as the center
of a concave boundary of a region. In the method, one has to manually place the points
in the same way on each of a training set of examples of the object. The points that mark
significant positions on an image object are usually referred to as landmarks. Each land-
mark point represents a distinguishable point on every example image. For example, when
we build a model of the appearance of an eye of a human face image, we could choose the
corners of the eye as landmarks as they are easy to identify and mark in an image. Such
a requirement constrains the application of the method as the object shapes involve cannot
change abruptly from image to image. Therefore, the method is not appropriate for highly
amorphous objects such as some types of cells or simple organisms.

In our application, we use a simple OpenGL program to display an image, and use
the mouse to click on the desired points, which are captured by the program and saved
in a file. The program minimizes the variance in distance between equivalent points by
automatically align the sets of points. The principal component analysis (PCA) technique
discussed in the previous chapter is used to reduce data redundancy. By analyzing the point
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2 Statistical Models

distribution, a model is derived to give the average positions of the points and a number of
parameters to control the main modes of variation contained in the training sets.

Points at clear corners of object boundaries or ‘T’ junctions are good choices for land-
marks. In practice, to make a good description of the shape of a target object, one needs
to choose a large number of landmark points. Moreover, one should augment a landmark
list with points along boundaries and these points should be placed equally spaced between
well defined landmark points. However, in our examples here, landmarks are created very
briefly without the augmented features; the main purpose of the examples is to illustrate
some basic techniques and principles of ASM. Figure 16-1 below shows a face image an-
notated with landmarks.

Figure 16-1 A Face Image Annotated with Landmarks

16.2 Statistical Models

We consider two dimensional images. We label significant points referred to as landmarks
in images of interest in order to examine and measure shape changes which could be corre-
lated with other factors. The landmarks, which are representative points may capture shape
constraints and will be used to build models. We can then use the models to construct
plausible new shape examples for use in image interpretation.

We define a point pi by its x-y coordinates:

pi =
(
xi

yi

)
(16.1)

We define a shape S by a set of n points:

S = {p1, p2, · · ·, pn} (16.2)

Each point in S is usually referred to as a landmark, which “marks” a significant position
of an image object.

We can form a linear affine combination of points by requiring the sum of the combining
coefficients to be equal to 1. That is.

p = α1p1 + α2p2 + · · ·+ αnpn =
(
α1x1 + α2x2 + · · ·+ αnxn

α1y1 + α2y2 + · · ·+ αnyn

)
(16.3)
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is a legitimate point if α1 + α2 + · · ·+ αn = 1.
Suppose we have N aligned shapes, and each shape Sk is defined by an equation of

(16.2); we can calculate the mean shape S by

S =
1
N

N∑
k=1

Sk (16.4)

In (16.4), each combining coefficient is αk = 1
N . Equation (16.4) means that for each point

in the shape, we take the average of N points from N shapes. For example, the i-th point,
pi of S is given by

pi =
1
N

N∑
k=1

pk
i (16.5)

where pk
i is the i-th point of the k-th shape, Sk.

We now consider a shape Sk as one super-point with dimension 2n. That is,

Sk =
(
xk

1 , ··, xk
n, y

k
1 , ··, yk

n

)
(16.6)

In the forthcoming discussions, when there is no confusion, we may simply refer to a
super-point as a point. Therefore, a training set of N shapes is composed of N points in
2n dimensions. We can apply a principal component analysis (PCA) to these N points
in the usual manner discussed in the previous chapter. Each axis indicates a way that the
landmark points tend to move together as the shape changes.

For each super-point (shape) Sk in the training set we can calculate its deviation, dk,
from the mean, S:

dk = Sk − S =
(
xk

1 − x1, ··, xk
n − xn, y

k
1 − y1, ··, yk

n − yn

)
(16.7)

Each dk is a 1× 2n row-vector. The deviation matrix D is an N × 2n matrix given by

D =


d1

d2

·
·
dN

 (16.8)

Though di is a row-vector, we can denote dij as the ij-th element of matrix D without
confusion. Note that the transpose of D, denoted by DT , is a 2n×N matrix.

We can then calculate the 2n × 2n covariance matrix C using (15.36), where the de-
nominator would be N − 1, the number of shapes minus 1. However, to be consistent with
the calculations used by other authors in the field, we use N in the denominator:

C =
1
N
DTD (16.9)

where DT is the transpose of D and the ij-th element, cij , of C is given by

cij =
1
N

N∑
k=1

dkidkj (16.10)
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Matrix C is symmetric and is 2n × 2n; it has 2n eigenvectors. Following the conventions
we have used in Chapter 15, each eigenvector ei is a 1 × 2n row vector. The projection
matrix P is given by

P =


e1

·
·

e2n

 (16.11)

which is a 2n×2n square matrix. We define a training set Xk as the transpose of the shape
Sk. So Xk is a 2n× 1 column vector:

Xk = ST
k =



xk
1

·
·
xk

n

yk
1

·
·
yk

n


(16.12)

and the mean of the training sets is X = S
T

. We can name the transpose of the deviation
matrix D as A, which is a 2n×N matrix:

A = DT =
(
X1 −X, ··,XN −X

)
(16.13)

As presented in (15.56) of Chapter 15, the projection ofA onto the new basis (eigenvectors)
is given by:

B = PA =


e1

·
·

e2n

(X1 −X, ··,XN −X
)

=


e1 · (X1 −X), ··, e1 · (XN −X)

· ·· ·
· ·· ·

e2n · (X1 −X), ··, e2n · (XN −X)


(16.14)

which is a 2n×N matrix. (Note that each ei is 1× 2n, and each (Xi −X) is 2n× 1. So
ei · (Xi −X) is 1× 1, which is a scalar.) If we apply PCA to the data and only retain the
first t principal eigenvectors (t < 2n), the projection matrix P becomes F , and (16.14) is
reduced to:

B = FA =


e1 · (X1 −X), ··, e1 · (XN −X)

· ·· ·
· ·· ·

et · (X1 −X), ··, et · (XN −X)

 (16.15)

Here, F , A andB are t×2n, 2n×N , and t×N respectively. If we denote the k-th column
vector of B as bk, then

bk =


e1 · (Xk −X)

·
·

et · (Xk −X)

 = F (Xk −X) (16.16)
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The original shape Xk is approximated by

Xk ≈ X + FT bk (16.17)

Conversely, the t-dimensional vector bk can be expressed as

bk ≈ F (Xk −X) (16.18)

If F = P (i.e. t = 2n), then FT = PT = P−1 and the original data can be recovered
exactly.

We can generalize bk to a t-dimensional vector b which defines a set of parameters of
a deformable model. A specific shape X (a t-dimensional column vector) can be obtained
by varying the elements of b; the shape is calculated by

X = X + FT b (16.19)

We denote the i-th element of b as bi. That is,

bi = ei · (X−X)

Note that bi is just one element of the column vector b; do not confuse this with bk, which
is simply a shape in the training set, a special b. Suppose the variance of bi across the
training set is δi. We can ensure that the shape generated is similar to those of the original
set by limiting bi to vary within the limits of 3 standard deviations, ±3

√
δi. People usually

call the model variation corresponding to bi as the i-th mode of the model. The feature
vector matrix F , consisting of principal eigenvectors of the covariance matrix C, defines a
rotated coordinate with each of its axis aligned with a cloud of the original shape vectors.
The vector b defines points in this rotated coordinate system.

16.3 PCA with Fewer Samples than Dimensions

The above PCA technique works well when the number of training shapes N is larger than
the vector dimension (2n). However, if the number of shapes used is significantly smaller
than the vector dimension, the method becomes inefficient as many of the eigenvector
components are 0.

Suppose we wish to apply a PCA to N points (shapes) each with 2n components, where
N < 2n. The covariance matrix C, given by (16.9), is 2n × 2n, which may be very
large. However, we can compute the eigenvalues and eigenvectors from a smaller matrix
with order N × N , derived from the data. Operations on a smaller matrix could save a
significant amount of computing cost because such operations often go as the cube of the
size of the matrix.

We start by subtracting each data vector Xk of (16.12) from the mean X and put them
in the transpose of the deviation matrix DT , which is the same matrix shown in (16.13):

DT =
(
X1 −X, ··,XN −X

)
(16.20)

Matrix DT is 2n×N and D is N × 2n.. The covariant matrix C is given by

C =
1
N
DTD (16.21)
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which is 2n× 2n. Normally, it has 2n eigenvectors and eigenvalues. However, if N < 2n,
many of the eigenvalues are zero.

Suppose we calculate a matrix T from

T =
1
N
DDT (16.22)

which isN×N and is much smaller than C. Let {e1, ·, ei, ·, eN} be the set ofN eigenvec-
tors of T with corresponding eigenvalues {λ1, ·, λi, ·, λN}. Each eigenvector ei is a 1×N
row vector. The product e′i = eiD is a 1 × 2n row vector. One can show that e′i is an
eigenvector of C with corresponding eigenvalue λi. There are N such eigenvectors; all the
remaining 2n − N eigenvectors of C have zero eigenvalues. The vector e′i may not be of
unit length; we may need to normalize it to make comparisons.

The feature vector matrix is given by

F =


e′1
·
·
e′t

 =


e1D
·
·

etD

 (16.23)

which is t× 2n.

16.3 Shape Model Example

Figure 16-2 below shows shapes from a training set of 6 landmarked faces. Each image is
annotated with 81 landmarks and is displayed in a window of 500 pixels × 500 pixels.

Figure 16-2 Shapes from a Training Set of Faces

Figure 16-3 shows the outlines of the 6 shapes drawn from the landmarks with the
controid of each shape located at the same origin of the drawing coordinate system. The
thick black outline in the figure is the average (X) of the 6 shapes.

In this example, the number of samples N is 6 and the number of dimensions 2n is
2 × 81 = 162. So we shall use matrix T given by equation (16.22) to determine the 6
eigenvectors and eigenvalues. As one can see from Figure 16-2, the landmarks can be
separated into 5 groups: face, mouth, nose, left eye, and right eye. So we should expect
that the data would cluster around 5 axes (eigenvectors) and thus one of the eigenvalues
should be very small, close to 0.
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Figure 16-3 Outlines of Six Shapes and Their Mean

We use the Jacobi Method discussed in the previous chapter to find eigenvectors and
eigenvalues. The six eigenvalues, arranged from large to small, are found to be:

λ1 = 13846.922, λ2 = 3538.559, λ3 = 2090.0279,
λ4 = 968.843, λ5 = 618.593, λ6 = 0.000

As an example, the values of the normalized eigenvector e1
′ for λ1 are:

0.089 0.086 0.093 0.083 0.078 0.077 0.046 -0.011 -0.075 -0.144
-0.176 -0.197 -0.208 -0.206 -0.186 -0.164 -0.117 -0.097 -0.069 -0.043
-0.016 -0.008 0.018 0.032 0.058 0.083 0.104 0.111 0.110 0.127
0.004 0.009 0.005 0.002 -0.014 -0.022 -0.030 0.018 0.014 -0.004
-0.011 -0.017 -0.007 -0.018 0.003 0.004 0.054 0.055 0.051 0.053
0.057 0.010 -0.001 0.014 0.027 0.054 0.037 0.030 0.020 0.037
0.034 0.074 0.083 0.096 0.066 0.031 0.045 0.026 0.021 -0.001
0.018 0.017 0.019 -0.012 -0.014 -0.012 0.008 0.012 0.006 0.020
0.014 0.059 0.070 0.099 0.120 0.131 0.150 0.193 0.180 0.169
0.162 0.129 0.096 0.040 0.007 -0.036 -0.069 -0.073 -0.101 -0.128
-0.151 -0.159 -0.178 -0.188 -0.171 -0.183 -0.178 -0.146 -0.123 -0.115
-0.063 0.030 0.024 0.024 0.017 -0.004 0.023 0.026 0.027 0.007
0.005 -0.001 0.012 0.017 0.038 0.022 0.030 0.042 0.062 0.045
0.024 0.015 0.015 0.028 0.047 0.054 0.042 0.018 0.017 0.016
0.026 0.022 0.038 0.028 0.008 0.002 0.003 0.024 0.007 0.006
0.008 0.009 0.048 -0.003 -0.025 -0.003 0.009 -0.035 -0.014 -0.016
-0.008 -0.012

Suppose we choose the first 3 eigenvectors e1, e2, and e3 to form the feature vector F :

F =

 e′1
e′2
e′3

 (16.24)

So t = 3 and F is a 3 × 162 matrix. A shape projected onto these axes (eigenvectors) is
given by

b = F (X−X) =

 e′1 · (X−X)
e′2 · (X−X)
e′3 · (X−X)

 (16.25)
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which is a 3× 1 column matrix.
The original shape can be ‘recovered’ by (16.9) which is

X = X + FT b

where FT is the the transpose of F and is a 162 × 3 matrix. The outlines of the shapes
‘recovered’ in this way are shown in Figure 16-4 below.

Figure 16-4 Reconstructed Shapes using 3 Principal Eigenvectors
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