
An Introduction to 3D Computer Graphics, Stereoscopic
Image, and Animation in OpenGL and C/C++

Fore June

Chapter 10 Create Stereoscopic Images with OpenGL

10.1 Multirendering using Accumulation Buffer

The accumulation buffer in OpenGL is one of the few buffers that help users processing
graphics data more conveniently. It has the same spatial resolution as the frame buffer but
the accumulation buffer has greater depth resolution. It is a higher precision buffer that
can be used to accumulate intermediate rendering results. We can alter the viewing and
projection matrices to provide multiple samples. These multiple samples result in multiple
images, which are typically added into the accumulation buffer. Very often, the resulting
accumulated images are scaled to produce an average filtered image. The following are the
properties of the OpenGL accumulation buffer.

1. We may think of the accumulation buffer as a special color buffer that stores color
values in floating point numbers and accumulates values.

2. Images are not rendered into it directly. Rather, images rendered into one of the color
buffers are added to the contents of the accumulation buffer after rendering. Special
graphics effects such as antialiasing, motion blur, and depth-of-field can be created
by accumulating images generated with different transformation matrices.

3. It helps us to do image processing in a convenient way.

The function that operates on the accumulation buffer is glAccum(), which works as
follows.

void glAccum (GLenum op, GLfloat mult);

op Specifies the accumulation buffer operation. Valid symbolic constants include GL ACCUM,
GL LOAD, GL ADD, GL MULT, and GL RETURN.

mult Specifies a floating-point value used in the accumulation buffer operation. The first
parameter op determines how this value is used.

The operations specified by the parameter op are as follows:

GL ACCUM
The operation obtains integer values of R, G, B, and A from the buffer currently
selected for reading. Each component value is divided by 2n − 1, where n is the
number of bits allocated to each color component in the currently selected buffer.
This results in a floating-point number in the range [0, 1]; this number is multiplied
by the parameter mult and added to the corresponding pixel component in the accu-
mulation buffer, thereby updating the accumulation buffer.

GL LOAD
The operation is similar to GL ACCUM, except that it does not use the current value
in the accumulation buffer to calculate the new value. Here, the integer values of R,
G, B, and A from the currently selected buffer are divided by 2n − 1, multiplied by
mult, and then stored in the corresponding accumulation buffer location, overwriting
the current value.

2

Chapter 10 Create Stereoscopic Images with OpenGL 3

GL ADD
The operation adds mult to each of the R, G, B, and A components in the accumula-
tion buffer.

GL MULT
The operations multiplies each of the R, G, B, and A components in the accumulation
buffer by mult and returns the scaled component to its corresponding accumulation
buffer location.

GL RETURN
The operation transfers accumulation buffer values to the color buffer or buffers cur-
rently selected for writing. It multiplies each R, G, B, and A component by mult,
then multiplies the product by 2n − 1, clamps the result to the range [0, 2n − 1],
and stores the result in the corresponding display buffer location. The only fragment
operations that are applied to this transfer are pixel ownership, scissor, dithering, and
color writemasks.

We can ‘clear’ the accumulation buffer with specified color components using the
functions glClearAccum() and glClear() (with accumulation buffer enabled). The
function glClearAccum (float R, float G, float B, float A) set the R, G, B, and A
values when the accumulation buffer is cleared.

The following code section shows an example of using this function to display four images
at the same time:

glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_ACCUM);
......

glClear(GL_ACCUM_BUFFER_BIT);
for (int i = 0; i < 4; i++) {

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);//clear screen
draw_image(i); //construct i-th image
glAccum(GL_ACCUM, 0.25); //scale each image by 0.25

}
glClear(GL_COLOR_BUFFER_BIT);//clear screen
glAccum(GL_RETURN, 1.0); //render the accumulated image

Example 10-1 Blending Colors of 3 Triangles

In this example, we make use of the accumulation buffer to blend the colors of three par-
tially overlapped triangles. The function glRotatef() is used to slightly offset each triangle
so that they only partially overlap with each other. The following is the complete listing of
the program.

/*
accumtest.cpp :
Partially overlap three triangles with blending colors
using accumulation buffer.

*/
#include <GL/glut.h>

//initialization
void init(void)

4 Multirendering using Accumulation Buffer

{
glClearColor(1.0, 1.0, 1.0, 0.0); //get white background color
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, 400.0, 0.0, 400.0);

}

void draw_triangle()
{

glBegin(GL_TRIANGLES);
glVertex2i(100, 100);
glVertex2i(100, 300);
glVertex2i(300, 300);

glEnd();

}

void setColor(int i)
{

switch (i){
case 0:

glColor3f(1, 0, 0); break;
case 1:

glColor3f(0, 1, 0); break;
case 2:

glColor3f(0, 0, 1); break;
default:

glColor3f(0, 0, 0); break;
}

}

void display(void)
{

glClear(GL_ACCUM_BUFFER_BIT);
for (int i = 0; i < 3; i++) {

glClear(GL_COLOR_BUFFER_BIT);//clear screen
glPushMatrix();
//slightly displace each triangle
glRotatef (i*5.0, 0, 0, 1);
setColor (i);
draw_triangle();
glPopMatrix();
glAccum(GL_ACCUM, 0.33); //accumulate color data

}
glClear(GL_COLOR_BUFFER_BIT); //clear screen
glAccum(GL_RETURN, 1.0);//render data saved in accumulation buffer

glFlush(); //send all output to screen
}

int main(int argc, char** argv)
{

glutInit(&argc, argv); //initialize toolkit
//set display mode with accumulation buffer operations
glutInitDisplayMode (GLUT_RGB | GLUT_ACCUM);
glutInitWindowSize(400, 400); //set window size on screen
glutInitWindowPosition(500, 250); //set window position on screen
glutCreateWindow(argv[0]); //open screen window
init();
glutDisplayFunc (display); //points to display function

Chapter 10 Create Stereoscopic Images with OpenGL 5

glutMainLoop(); //go into perpetual loop
return 0;

}

The main accumulating task is done in the call-back function display(), where the com-
mand glAccum(GL ACCUM, 0.33) accumulates the data in the accumulation buffer. In-
side the for-loop, whenever the function draw triangle() is called, data are written into
the color buffer and at the same time the normalized color data are multiplied by 0.33 and
added to the original data in the accumulation buffer. This is essentially a color-blending
process. When the program exits the for-loop, the color buffer is cleared by the com-
mand glClear(GL COLOR BUFFER BIT). The next statement glAccum(GL RETURN,
1.0) sends the data to the color buffer without further modification as the scaling factor
is 1.0 (second parameter of glAccum) and thus render them on the screen. Figure 10-1
below shows the output of this code.

Figure 10-1 Color Blending using Accumulation Buffer

10.2 OpenGL Stereo

The above section describes the general method of using the accumulation buffer to super-
impose different images and render them simultaneously. This is the general technique of
creating stereo pairs. We create one image for the left eye and one for the right eye and ac-
cumulate both images in the buffer for superimposition. Nowadays, some system may offer
special hardware to facilitate the process. In general, there are four types of OpenGL-based
stereo viewing systems:

1. Hardware with OpenGL stereo support. This makes creating stereo pairs a lot
easier. We may initialize the GLUT library for stereo operation with a code section
like the following:

if (stereo)
glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB|GLUT_DEPTH|GLUT_STEREO);

else
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

In stereo mode, this defines two buffers, namely GL BACK LEFT and GL BACK RIGHT.
We need to select the appropriate buffer for operations. For example, the following
code clears the two buffers:

6 10.3.1 Using glColorMask

glDrawBuffer(GL_BACK_LEFT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
if (stereo) {

glDrawBuffer(GL_BACK_RIGHT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

}

2. Hardware without OpenGL stereo support. This is used by software that does
not know about stereo. These are the low-cost stereo devices targeting consumers,
mostly 3D games. They work by using library wrappers that intercept the 3D infor-
mation sent to OpenGL by the application and convert it to left and right views before
displaying the data needed to work with the hardware. These drivers mostly do not
work for applications that know about stereo; this may cause a lot of confusion for
people trying to use them with true stereo programs.

3. Hardware without OpenGL support. This is used by software that knows how
to directly produce stereo for a given system without any special hardware support.
This may involve using a low-cost stereo device like one of those mentioned in 2.
This may suffer from the problem of platform-dependent coding.

4. Simulated OpenGL stereo support. This is for software that knows about stereo.
This approach allows one to use real stereo applications (as in case 1) on low cost
hardware (as in case 2) without the application having to do all the work when porting
the application from one platform to another one.

10.3 3D Stereo Rendering Using OpenGL

10.3.1 Using glColorMask

In this section, we discuss the general technique to render 3D stereo images without any
special hardware support. The following are the general steps of using OpenGL to create
3D stereo images.

1. Use the function glColorMask() to handle colors of different situations of the scene.
This function has the following prototype.

void glColorMask(GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha);

The function specifies whether red, green, blue, and alpha can be written into the
frame buffer. The default values are all GL TRUE meaning that all R, G, B, and A
components can be written into the buffer. For instance, if we want to filter out the
blue component, we simply set the blue variable to GL FALSE.

2. Create the scene with all the surfaces colored with pure white.

3. Render the scene twice with different colors, once for each eye.
Suppose we use red color for the left eye, and blue color for the right eye. Then we
can do the following to create the two colored scenes.

a) Call
glColorMask (GL TRUE, GL FALSE, GL FALSE, GL FALSE);

Chapter 10 Create Stereoscopic Images with OpenGL 7

before rendering the left-eye scene so that the scene is drawn with red color
only.

b) Call
glColorMask (GL FALSE, GL FALSE, GL TRUE, GL FALSE);

before rendering the right-eye scene so that the scene is drawn with blue color
only.

4. Render the scene twice and use the accumulation buffer to superimpose the two im-
ages. (If the OpenGL hardware supports stereo buffers, then the above steps can be
implemented directly without using the accumulation buffer.)

10.3.2 Using Accumulation Buffer

If the hardware of our system does not support stereo buffers, we may use the accumulation
buffer to merge the two images created for the left and right eyes. Alternatively, we may
use the color blending techniques that we have discussed in Chapter 5 to combine the
images. However, the accumulation buffer technique is more flexible and provides more
image processing functions. The following are the typical steps of using this method:

1. Initialize the accumulation buffer in glut:

glutInitDisplayMode (GLUT DOUBLE | GLUT ACCUM | GLUT RGB | GLUT DEPTH);

2. Set the clear-colour for the accumulation buffer:

glClearAccum (0.0, 0.0, 0.0, 0.0);

3. Clear the accumulation buffer when necessary:

glClear (GL ACCUM BUFFER BIT);

4. Copy the current drawing buffer to the accumulation buffer. We usually do this after
the left eye image has been drawn:

glAccum (GL LOAD, 1.0);

5. Add the current drawing buffer, which now contains the right eye image, to the ac-
cumulation buffer:

glAccum (GL ACCUM, 1.0);

6. Copy the accumulation buffer content to the current drawing buffer:

glAccum (GL RETURN, 1.0);

10.3.3 Toe-in Projection Method

We have discussed in the previous chapter the principles of the toe-in method in creating
stereo image pairs. Figure 9-9 of the chapter shows the setup of this method, in which both
the left and right eyes point towards a single focal point. Here we discuss the implementa-
tion of this method. We shall use the function gluPerspective() to do the projection of the
two images as both the left and right eyes will have the same values of viewing angle (field
of view), aspect ratio, near distance, and far distance.

As we did in Chapter 7, we use a Point3 class for handling positions, and use a Vector3
class for handling vectors in 3D space. Their declarations are straight forward and similar;

8 10.3.3 Toe-in Projection Method

each class defines the public data members x, y, z to describe the coordinates of a point or
the components of a vector, (x, y, z). Details of these classes are defined and discussed in
Chapter 12. Here, for clarity, we just use a simplified version of each of those classes.

Since we have two eye positions to deal with, we define a Camera class that can handle
different viewpoints and different orientations:

class Camera {
public:

Point3 p; // View position
Point3 focus; // Point at which camera focuses
Vec3 v; // View direction vector
Vec3 up; // View up direction
double f; // Focal Length along v
double fov; // Camera aperture (field of view)
double es; // Eye separation
int w; // Viewplane width
int h; // Viewplane height

//constructors
Camera ()
{

// default parameters
f = 10.0;
es = f / 30;
fov = 60;
w = 400;
h = 300;
p = Point3 (0, 0, 10); //viewpoint
focus = Point3(0, 0, 0); //focus
v = Vec3 (0, 0, 1); //view direction
up = Vec3 (0, 1, 0); //up vector

}

void setCamera(double f0, double es0, double fov0, int w0, int h0)
{

f = f0;
es = es0;
fov = fov0;
w = w0;
h = h0;

}

void lookAt ()
{

gluLookAt(p.x,p.y,p.z, focus.x,focus.y,focus.z, up.x,up.y,up.z);
}

void lookAt(const Point3 &eye,const Point3 &focus,const Vec3 &up0)
{

p = eye;
up = up0;
gluLookAt(p.x,p.y,p.z, focus.x,focus.y,focus.z, up.x,up.y,up.z);

}
};

In the Camera class, we define two lookAt() functions which work in the same way as the
OpenGL glutLookAt() function. The first one, which does not take any input parameters,
uses the data members to set up the camera orientation. The second one, which takes three
input parameters, uses the input parameters and calls glutLookAt() to do the setup.

Chapter 10 Create Stereoscopic Images with OpenGL 9

Listing 10-1 below lists the code segment that creates a stereo pair of a wireframe cube
and solid teapot using this toe-in method. In the example, the function drawScene() does
the job of creating the graphics scene; it is independent of the way we render it. The camera
is first setup in the init() routine using the parameters common to both the left and right eye
positions. The two images are rendered in the callback function display(). The camera first
moves to the left eye position, takes a ‘shot’ with a red ‘filter’, scales and saves the data in
the accumulation buffer. It then moves to the right eye position and takes a ‘shot’ using a
blue ‘filter’. The positions are calculated according to Equation (9.6). That is, the left-eye
location El, and the right-eye location Er are given by

Left eye position El = (−e2 , 0, 0)

Right eye position Er = (+e
2 , 0, 0)

(10.1)

where e is the eye separation and we assume that the mid-point between the eyes is at
(0, 0, 0). However, in the program we assume the mid-point is at (0, 0, d) implying that the
origin (0, 0, 0) is at the center of the projection planes and the mid-point is at a distance d
from the center.

The two images are superimposed in the accumulation buffer and rendered with the
command “glAccum(GL RETURN,1.0);” at the end. We have used a black background
implying that the color components are all zero. Therefore, when we “accumulate” the
scene, the background will not contribute any value in the process. Also, the color is fil-
tered by a color-filter, the background will not have any effect as zero component remains
to be zero. Figure 10-2 shows the output of this program.

Program Listing 10-1: Toein Projection Implementation (toein.cpp)
——————————————————————————————————–

/*
Create the scene

*/
void drawScene(void)
{

glPushMatrix();
glRotatef (20, 1, 0, 0);
glRotatef (45, 0, 1, 0);
glLineWidth (3);
glutWireCube(4);
glPopMatrix();
glPushMatrix();
glTranslatef (1, 0, 4);
glRotatef (25, 0, 1, 0);
glutSolidTeapot (1);
glPopMatrix();

}

Camera camera;

void init(void)
{

glEnable(GL_DEPTH_TEST);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glFrontFace(GL_CW);
glClearColor (0, 0, 0, 0.0); //black background
glClearAccum (0.0, 0.0, 0.0, 0.0);

10 10.3.3 Toe-in Projection Method

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
//setup camera
double focalLength = 15;
double eyeSeparation = focalLength / 30.0;
double fov = 60;
camera.setCamera (focalLength, eyeSeparation, fov, 400, 300);
Point3 focus (0, 0, 0);
Vector3 up (0, 1, 0);
camera.focus = focus;
camera.up = up;
double aspectRatio = (double) camera.w / camera.h;
gluPerspective(camera.fov, aspectRatio, 0.1, 10000.0);

}

void display(void)
{

// Set the buffer for writing and reading
glDrawBuffer(GL_BACK);
glReadBuffer(GL_BACK);

// Clear things
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear (GL_ACCUM_BUFFER_BIT);
// Left eye projection
glMatrixMode(GL_MODELVIEW);
glDrawBuffer(GL_BACK_RIGHT);
glLoadIdentity();
// setup camera for left eye
double d = 10;
Point3 viewPoint (-camera.es / 2, 0, d);
camera.p = viewPoint; //change camera viewpoint
camera.lookAt();

// Left eye filter
glColorMask(GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE);

drawScene();
// Write over the accumulation buffer
glAccum(GL_LOAD, 1.0);
glDrawBuffer(GL_BACK);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

//right side projection
glMatrixMode(GL_MODELVIEW);
glDrawBuffer(GL_BACK_LEFT);
glLoadIdentity();
viewPoint.x = camera.es / 2;
camera.p = viewPoint; //change camera viewpoint
camera.lookAt();
// Right eye filter
glColorMask(GL_FALSE,GL_FALSE,GL_TRUE,GL_TRUE);
drawScene();
glFlush();
// Addin the new image and copy the result back
glAccum(GL_ACCUM, 1.0);

// Allow all colors
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);

Chapter 10 Create Stereoscopic Images with OpenGL 11

glAccum(GL_RETURN,1.0);
glutSwapBuffers();

}

——————————————————————————————————

Figure 10-2 Anaglyph Created Using Toe-in Method

10.3.4 Two-center Projection Method

The two-center or the off-axis projection, where the view vector for each eye position re-
mains parallel as shown in Figure 9-10, is the correct method of creating proper anaglyph
pairs. We have discussed in Section 9.4.3 the general technique to calculate the projected
points on the view plane. However, in our implementation, we do not calculate the pro-
jected points directly. We make use of the OpenGL projection functions to do the cal-
culations for us. Since the view vector for each eye remains parallel, we use the OpenGL
function glFrustum() to describe the perspective projection. Our task is to make the proper
setup to use glFrustum().

Consider Figure 10-3 that shows the two-center projection (see also Figure 9-13 of
Chapter 9). Suppose we let AB = dleft and BD = dright. We can make use of simi-
lar triangles to find the parameters to call glFrustum() for each of the eyes.

In this method, both the left and right eyes use the same projection plane. However, the
projected images will be mapped to different near-planes which will define two different
frustum as shown in Figure 10-3. In this way, the fields of view for both eyes are the same.
Let us first consider the case of the left eye. Referring to the figure, we let

L = left = −AB = −dleft R = right = BD = dright

B = bottom T = top
N = neardistance F = fardistance
f = focal length of camera θ = field of view

e = eye separation ρ = aspect ratio = width(W)
height(H)

(10.2)

12 10.3.4 Two-center Projection Method

where W and H are the width and height of the near-plane, and L,R,B, T denote the left,
right, bottom and top boundary coordinates of the near-plane respectively. As we usually
do, we also assume that the near-plane lies in the x-y plane with y-axis pointing upward.
These imply that

T = N tan θ2
B = −T
H = T −B = 2T

(10.3)

Applying similar triangle properties, we can calculate the half-width a of the projection
plane of Figure 10-3. First we notice that

2a
f

=
W

N
(10.4)

Therefore,

a

f
=

W

2N
=
ρ× 2T

2N
= ρ× T

N
= ρ× tan

θ

2
(10.5)

From (10.5), we obtain

a = f × ρ× tan
θ

2
(10.6)

Once a is known, we can determine the distances b and c of Figure 10-3 by:

b = a− e
2

c = a+ e
2

(10.7)

From similar triangles, we have

dleft

b
=
N

f
=
dright

c
(10.8)

Also,

L = −dleft = −b× N
f

R = dright = c× N
f

(10.9)

Combining (10.7), (10.8), and (10.9), we obtain

L = −b× N
f

= −a× N
f

+ e
2 ×

N
f

= −ρ× H
2 + e

2 ×
N
f

R = c× N
f

= a× N
f

+ e
2 ×

N
f

= ρ× H
2 + e

2 ×
N
f

(10.10)

Chapter 10 Create Stereoscopic Images with OpenGL 13

Virtual
Camera

..

(Left)

(Right)

..

..

A

B

C

D

E

Near
Plane

F

Projection
Plane
(Screen)

G

H

I

J

......
......

......
......

......
......

......
......

......
......

......
......

......
......

.....

...

aperture
e

b

c

a

N = Near Plane Distance from Eyes

f = Focal Length (Distance to Screen)

Figure 10-3 Off-axis Projection Calculations

The variables L,R, T , and B are used as the input parameters for the glFrustum()
function of the left eye. Using the same code notations that we have used in the toein
method implementation, we can implement this using a code section like the following.

/*
L = left, R = right, T = top, B = bottom, N = near, F = far,
f = focal length, e = eye separation, theta2 = (field of view)/2
a = half-width of projection plane, ratio = aspect ratio

*/
double L, R, T, B, N, F, e, f, theta2, a, b, c, ratio;
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
... //set N and F to near and far distances
f = camera.f; // focal length
e = camera.es; // eye separation
theta2 = (3.1415926/180) * camera.fov / 2; //theta / 2 in radians
ratio = (double) camera.w / camera.h;
a = f * ratio * tan (theta2);
b = a - e / 2.0;
c = a + e / 2.0;
T = N * tan (theta2);
B = -T;
L = -b * N / f;
R = c * N / f;
glFrustum(L, R, B, T, N, F);

14 10.3.4 Two-center Projection Method

//viewpoint = (-e/2, 0, f), focus = (-e/2, 0, 0), up=(0, 1, 0)
gluLookAt (-camera.es/2, 0, f, -camera.es/2, 0, 0, 0, 1, 0);

The above formulas and code are for the left eye. We have assumed that the origin (0, 0, 0)
is at the center of the projection plane; the eye is looking along the −z direction and is at a
distance f from the projection plane.

We can similarly obtain the equations and code for the right eye. If the center of the
eye separation has x-y coordinates (0, 0), then there are some symmetries between the
two eyes and the right eye parameters can be obtained directly from those of the left eye.
Firstly, we note that the top and bottom boundaries of the near-plane are the same for both
eyes. Secondly, we note that the value of the left boundary for the right eye is equal to the
negative value of the right boundary for the left eye and the value of the right boundary for
the left eye is equal to the negative value of the left boundary for the right eye. Suppose we
use the subscript l to denote the left eye and the subscript r to denote the right eye. Then
we have

Tr = Tl = N tan θ2
Br = −Tr

Lr = −Rl = −c× N
f

= −ρ× H
2 − e

2 ×
N
f

Rr = Ll = b× N
f

= ρ× H
2 − e

2 ×
N
f

(10.11)

Listing 10-2 below lists the code segment that creates a stereo pair using this two-center
method. The setup of the camera and the functions init() and drawScene() are very similar
to those of the toe-in method of Listing 10-1 that we have explained above. In this exam-
ple, we use the function glColorMask() to filter the colors for the left and right eyes. The
output of this program is shown in Figure 10-4 below.

Program Listing 10-2: Two-center Projection Implementation (twocenter.cpp)
——————————————————————————————————

void init(void)
{

glEnable(GL_DEPTH_TEST);
glClearColor(0.0,0.0,0.0,0.0); //black background
glClearAccum(0.0,0.0,0.0,0.0); // The default

}

void display(void)
{

/*
L=left,R=right,T=top,B=bottom,N = near,F = far,f=focal length
e = eye separation, a = half-width of projection plane,
ratio = aspect ratio, theta2 = (field of view)/2

*/
double theta2, near,far;
double L, R, T, B, N, F, f, e, a, b, c, ratio;

// Clip to avoid extreme stereo
near = camera.f / 5;
far = 1000.0;
f = camera.f;

// Set the buffer for writing and reading

Chapter 10 Create Stereoscopic Images with OpenGL 15

glDrawBuffer(GL_BACK);
glReadBuffer(GL_BACK);

// Clear things
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear(GL_ACCUM_BUFFER_BIT);

// Left eye filter
glColorMask(GL_TRUE,GL_FALSE,GL_FALSE,GL_TRUE);

// Create the projection
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
theta2 = (3.1415926 / 180) * camera.fov / 2; //theta / 2 in radians
ratio = camera.w / (double)camera.h;
a = f * ratio * tan (theta2);
b = a - camera.es / 2.0;
c = a + camera.es / 2.0;
N = near;
F = far;
T = N * tan (theta2);
B = -T;
L = -b * N / f;
R = c * N / f;
glFrustum(L, R, B, T, N, F);

// Create the model for left eye
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
camera.p = Point3(-camera.es/2, 0, f); //change camera viewpoint
camera.focus = Point3 (-camera.es/2, 0, 0);
camera.lookAt();
drawScene();
glFlush();
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);

// Write over the accumulation buffer
glAccum(GL_LOAD,1.0);

glDrawBuffer(GL_BACK);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

//now handle the right eye
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

// Obtain right-eye parameters from left-eye, no change in T and B
double temp;
temp = R;
R = -L;
L = -temp;
glFrustum(L, R, B, T, N, F);

// Right eye filter
glColorMask(GL_FALSE,GL_FALSE,GL_TRUE,GL_TRUE);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
camera.p = Point3(camera.es/2, 0, f); //change camera viewpoint
camera.focus = Point3 (camera.es/2, 0, 0);

16 10.3.4 Two-center Projection Method

camera.lookAt();
drawScene();
glFlush();
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);

// Add the new image and copy the result back
glAccum(GL_ACCUM,1.0);
glAccum(GL_RETURN,1.0);

glutSwapBuffers();
}

—————————————————————————————————-

Figure 10-4 Anaglyph Created Using Two-center Method

In the implementation, we have again used a black background. It is not appropriate to
use a white background to create a stereo pair. This is because when we use the OpenGL
commands to accumulate the colors, all values in the color buffer, including the background
values will be added and this could lead to undesired values. More importantly, stereo pairs
do not work well with a white background. With a black background, when a region with
blue color passes through the red filter of our left eye, it becomes black and ‘disappears’,
and our left eye will not see the region. On the other hand, if a white background is used,
the blue region simply becomes a black region and our left eye still can see a black region
on a white background. This means that the left eye will see something that is in not
supposed to be seen in the real 3D world. As a consequence, this will largely compromise
the stereoscopic effect.

In some special cases that we do need a non-black background, we can first start with
a black background and use the accumulation buffer to accumulate the objects we need to
render. In the process, we use the stencil buffer to keep track of the pixels that the objects
have mapped to. The stencil buffer creates a mask for the objects. At the end, we put in the
special background we want but will mask off the pixels the objects have occupied. We will
present the implementation of this technique in Chapter 14, where we discuss the creation
of stereo pairs using extrusion and surface of revolution.

Chapter 10 Create Stereoscopic Images with OpenGL 17

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth. See http://www.forejune.com/

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

18 10.3.4 Two-center Projection Method

An Introduction to Digital Video Data
Compression in Java

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in java. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding. See

http://www.forejune.com/
January 2011

ISBN-10: 1456570870

ISBN-13: 978-1456570873

———————————————————————————————————–

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

	Chapter 10 Create Stereoscopic Images with OpenGL
	10.1 Multirendering using Accumulation Buffer
	10.2 OpenGL Stereo
	10.3 3D Stereo Rendering Using OpenGL
	10.3.1 Using glColorMask
	10.3.2 Using Accumulation Buffer
	10.3.3 Toe-in Projection Method
	10.3.4 Two-center Projection Method

