
An Introduction to 3D Computer Graphics, Stereoscopic
Image, and Animation in OpenGL and C/C++

Fore June

Chapter 12 Normal Vectors and Polygon Mesh

A polygon mesh (or mesh) is a collection of polygons which share edges and vertices.
We can construct any 3D graphical object using polygon meshes. In general, we can use
different representations of polygon meshes for different applications and goals. However,
triangles are the most commonly used polygons to form polygon meshes because a triangle
is the simplest polygon, having three sides and three angles, and is always coplanar. Any
other simple polygon can be decomposed into triangles. The process of decomposing a
polygon into a set of triangles is referred to as triangulation.

Depending on the number of polygons used, a mesh can represent an object with various
degrees of resolution, from a very coarse representation to a very fine-detailed description.
A mesh can be used for graphics rendering or for object recognition. There are many ways
to represent a mesh. A simple way is to use the wire-frame representation where the model
consists of only the vertices and edges of the object model. Figure 3-5 of Chapter 3 shows
the wire-frame representation of a teapot and its mirror image. In general the wire-frame
model assumes that the polygons are planar, consisting of straight edges. A popular gener-
alization of the wire-frame representation is the face-edge-vertex representation where we
specify an object by the faces, edges and vertices. The information can be saved in different
lists as discussed below. To specify the face of a surface, besides the vertices, we also need
to calculate the normal to it.

A normal to a plane is a vector perpendicular to the plane. If a surface is curved, we have
to specify a normal at each vertex and a normal is a vector perpendicular to the tangential
plane at the vertex of the surface. Normals of a surface are important in calculating the
correct amount of light that it can receive from a light source. In this chapter we discuss
how to construct simple objects using polygon meshes and how to import these objects
from an external application to an OpenGL program and export them from an OpenGL
program to another application.

12.1 3D Vectors

A 3D vector is the difference between two points in 3D space, possessing a magnitude (or
length) and a direction. It is usually represented by bold face. If P1 and P2 are two points,
then A = P2 − P1 is a vector directing from P1 to P2. The three standard unit vectors in
Euclidean Space along the x, y, and z directions are denoted by i, j, and k, and represented
as

i =

 1
0
0

 , j =

 0
1
0

 , k =

 0
0
1

 (12.1)

A vector A can be expressed as A = Axi +Ayj +Azk, or as

A =

 Ax

Ay

Az

 (12.2)

The magnitude of A is |A| =
√
A2

x +A2
y +A2

z .

2

Chapter 12 Normal Vectors and Polygon Mesh 3

The dot product of two vectors A and B is a scalar and is given by

A ·B = |A||B|cos θ (12.3)

where θ is the angle between A and B as shown in the following figure.

θ

B

A

Figure 12-1 A ·B = |A||B|cosθ

The cross product of two vectors A and B is another vector C, which is perpendicular to
both A and B and is denoted by

C = A×B (12.4)

The magnitude of the cross product is given by

|C| = |A||B|sin θ (12.5)

where θ is the angle between the two vectors as shown in Figure 12-2.

θ

B

A

C

Figure 12-2 C = A×B

The direction of the cross-product C is determined by the right-hand rule; when we roll
our fingers from A to B with our right hand, our thumb points in the direction of C. The
cross product can be also calculated by the following formula.

C = A×B = (AyBz −AzBy)i + (AzBx −AxBz)j + (AxBy −AyBx)k (12.6)

The components of the cross product can be obtained in the way we calculate the determi-
nant of a 3× 3 matrix as shown in the following figure; the x, y, and z components of the
product are obtained by collecting the i, j, and k terms respectively.

4 3D Vectors

i j k

Ax Ay Az

Bx By Bz

i j k

Ax Ay Az

−AyBzk

−AzByi

−AxBzj

+AyBzi

+AxByk

+AzBxj

Figure 12-3 Calculating Cross Product of Two Vectors

The following are some basic properties of 3D vectors. Suppose a and b are scalars, and
A, B, and C are 3D vectors. We let A = |A|. Then

1. A×B = −(B×A)

2. (aA)×B = a(A×B)

3. A× (B + C) = A×B + A×C

4. A×A = 0 =

 0
0
0

5. (A×B) ·C = (C×A) ·B = (B×C) ·A

6. A× (B×A) = A×B×A = A2B− (A ·B)A

7. a(A + B) = aA + aB

8. (A + B) + C = A + (B + C)

Implementations

We have discussed the difference between points and vectors in Chapter 3. Since both
a point and a vector are specified by three coordinates, it is convenient to define a class
called XYZ that has the common properties of points and vectors; we define a Vector3 class
(for 3D vectors) and a Point3 class (for 3D points) that will inherit the properties of XYZ as
shown in Figure 12-4. The empty-head arrow in the figure denotes the inheritance relation;
it points toward the parent class XYZ; the child classes are at the tail.

Chapter 12 Normal Vectors and Polygon Mesh 5

Vector3 Point3

XYZ

Figure 12-4. Relations between vector and point classes

We shall overload several operators for the two child classes. (In C++, overload an
operator means redefine a built-in operator. An overloaded operator can be implemented
as a global function or as a member function of a class.) The overloaded operators for
Vector3 and Point3 include the following:

− vector or point subtraction

+ vector addition or vector-point addition

∧ vector cross product operation

∗ vector dot product operation

∗ multiplication of a scalar and a vector

Listing 12-1 below shows the declaration of the class XYZ.

class XYZ {
public:
double x;
double y;
double z;
XYZ ();
XYZ (double x0, double y0, double z0);
void set (double x0, double y0, double z0);
XYZ getXYZ();
void getXYZ(double a[]);
void print();

};

Listing 12-1 Class XYZ

The functions getXYZ() return the information of the triple (x, y, z) of an XYZ object.
They are implemented as follows:

6 3D Vectors

XYZ XYZ::getXYZ()
{
XYZ a(x, y, z);

return a;
}

void XYZ::getXYZ(double a[])
{
a[0] = x; a[1] = y; a[2] = z;

}

Listing 12-2 shows the declaration of the class Point3, which inherits all the data and
function members (except constructors) of XYZ.

class Vector3; //forward declaration

class Point3: public XYZ
{

public:
Point3();
Point3(double x0, double y0, double z0);
Point3(const Point3 &p);
Vector3 operator-(const Point3 &p); //point-point-> vector
Point3 operator+(const Vector3 &v);//point+vector-> point

};

Listing 12-2 Class Point3
Implementation of the overloaded operators ‘-’ and ‘+’ are straightforward. For example,
the subtraction operator ‘-’ which calculates the difference between two points and returns
the difference as a vector can be implemented as follows:

Vector3 Point3::operator - (const Point3 &p)
{

Vector3 v1;

v1.x = x - p.x;
v1.y = y - p.y;
v1.z = z - p.z;

return v1;
}

In this implementation, the argument of the operator function is a Point3 object. The ‘&’
before p in the argument means that we are using pass-by-reference to pass the object to the
function; this is a more efficient way of passing an object to a function than using “pass-
by-value”, in which the passing object is copied and pushed onto the stack, and the called
function has to pop it from the stack, which could be time-consuming when the object is
large. Pass-by-reference simply passes the address of the object. To inform the user that our
purpose of using “pass-by-reference” is for efficiency but not because we want to alter the
content of the object, we put the keyword const in front of the data type. In general, “pass-
by-reference” is more efficient but “pass-by-value” is more robust as it cleanly separates
the calling and called functions.

Listing 12-3 below shows the declaration of the class Vector3 and the overloaded oper-
ator ‘*’.

Chapter 12 Normal Vectors and Polygon Mesh 7

class Point3; //forward declaration

class Vector3: public XYZ
{

public:
Vector3();
Vector3(double x0, double y0, double z0);
Vector3(const Vector3 &v);
Vector3 operator + (const Vector3 &v);//vec + vec->vector
Vector3 operator - (const Vector3 &v);//vec - vec->vector
Vector3 operator ˆ (const Vector3 &v);//cross product
double operator * (const Vector3 &v);//dot product
Point3 operator + (const Point3 &p); //vec+point->point
double magnitude();
void normalize(); //make it a unit vector

};

Vector3 operator * (double a, const Vector3 &v);
Vector3 operator * (const Vector3 &v, double a);

Listing 12-3 Class Vector3

Listing 12-4 shows the implementations of this class and the overloaded operators.

Program Listing 12-4: Vector3 class implementation
——————————————————————————————————–

Vector3::Vector3():XYZ()
{ }

Vector3::Vector3(double x0, double y0, double z0): XYZ(x0, y0, z0)
{ }

Vector3::Vector3(const Vector3 &v)
{

x = v.x;
y = v.y;
z = v.z;

}

Vector3 Vector3::operator + (const Vector3 &v)
{

Vector3 v1;
v1.x = x + v.x;
v1.y = y + v.y;
v1.z = z + v.z;

return v1;
}

Vector3 Vector3::operator - (const Vector3 &v)
{

Vector3 v1;
v1.x = x - v.x;
v1.y = y - v.y;
v1.z = z - v.z;

return v1;

8 3D Vectors

}

//cross product
Vector3 Vector3::operator ˆ (const Vector3 &v)
{

Vector3 v1;
v1.x = y * v.z - z * v.y;
v1.y = z * v.x - x * v.z;
v1.z = x * v.y - y * v.x;

return v1;
}

//dot product
double Vector3::operator * (const Vector3 &v)
{

double d;
d = x * v.x + y * v.y + z * v.z;

return d;
}

//vector + point --> point
Point3 Vector3::operator + (const Point3 &p)
{

Point3 p1;

p1.x = x + p.x;
p1.y = y + p.y;
p1.z = z + p.z;

return p1;
}

double Vector3::magnitude()
{

return sqrt(x * x + y * y + z * z);
}

void Vector3::normalize()
{

double d = x*x + y*y + z*z;

if (d > 0) {
d = sqrt (d);
x /= d;
y /= d;
z /= d;

}
}
//------------------- external functions ---------------
//scalar times vector
Vector3 operator * (double a, const Vector3 &v)
{

Vector3 v1;
v1.x = a * v.x;
v1.y = a * v.y;
v1.z = a * v.z;

return v1;

Chapter 12 Normal Vectors and Polygon Mesh 9

}

Vector3 operator * (const Vector3 &v, double a)
{

return a * v;
}

——————————————————————————————————

Listing 12-5 below is a sample program that demonstrates the usage of the Vector3 and
Point3 classes operators.

Program Listing 12-5: Example of Using Vector3 and Point3 classes
——————————————————————————————————–

//vpdemo.cpp
int main()
{

Vector3 v1 (1.0, 2.0, 4.0); //a vector
XYZ a; //an XYZ object
a = v1.getXYZ (); //get XYZ object of v1
cout << "v1 = ";
v1.print(); //prints (x, y, z) values
Vector3 v2 (2.0, 4.0, 6.0);
cout << "v2 = ";
v2.print(); //prints (x, y, z) values of v2
Vector3 v3 (v2); //construct v2 from v2
v3.normalize(); //normalize v3
cout << "v3 = ";
v3.print(); //now v3 is a unit vector
cout << "magnitude of v3 is ";
cout << v3.magnitude() << endl; //magnitude should be 1

Vector3 v4 = v2 + v1; //addition of two vectors
cout << "v2 + v1 = ";
v4.print();
Vector3 v5 = v2 - v1; //subtraction of two vectors
cout << "v2 - v1 = ";
v5.print();
Vector3 v6 = v1 ˆ v2;
cout << "v1 X v2 = ";
v6.print();
double d = v1 * v2;
cout << "Dot product of v1 and v2 is " << d << endl;
Vector3 v7 = 3 * v1;
cout << " 3 * v1 = ";
v7.print();

Point3 p1 (0.0, 1.0, 2.0);
cout << "Point p1 = ";
p1.print();
Point3 p2 = v1 + p1;
cout << "v1 + p1 is the point ";
p2.print();

return 0;
}

——————————————————————————————————

10 Equation of a Plane

When executed, the program of Listing 12-5 generates the following outputs.

v1 = (1, 2, 4)
v2 = (2, 4, 6)
v3 = (0.267261, 0.534522, 0.801784)
magnitude of v3 is 1
v2 + v1 = (3, 6, 10)
v2 - v1 = (1, 2, 2)
v1 X v2 = (-4, 2, 0)
Dot product of v1 and v2 is 34
3 * v1 = (3, 6, 12)
Point p1 = (0, 1, 2)
v1 + p1 is the point (1, 3, 6)

12.2 Normal to a Surface

12.2.1 Normal Vector

A normal vector (or normal for short) to a surface at a point is a vector pointing in a
direction which is perpendicular to the surface at that point. For a plane (flat surface), one
perpendicular direction is the same for every point on the surface. A normal to a surface at
a point is the same as a normal to the tangent plane to that surface at that point. We know
that any three points P1, P2, P3 determine a unique plane. To find a normal to the plane,
we build two vectors

A = P2 − P1

B = P3 − P1
(12.7)

In forming the vectors, the points P1, P2, P3 should appear counter-clockwise when we
look at the plane (i.e. front face) formed by the three points. The normal to the plane is
given by

N = A×B (12.8)

The corresponding unit normal is given by

n =
N
N

(12.9)

where N = |N| is the magnitude of normal N, and |n| = 1.

12.2.2 Equation of a Plane

SupposeP = (x, y, z) is an arbitrary point in the plane formed by the three pointsP1, P2, P3

discussed above. Then V = P − P1 is a vector directing from P1 to P . That is,

V =

 x
y
z

−
 x1

y1
y1

 (12.10)

Since V is on the plane, it is perpendicular to the normal. Therefore, V · N = 0. As a
result,

xNx + yNy + zNz − (x1Nx + y1Ny + z1Nz) = V ·N = 0 (12.11)

Chapter 12 Normal Vectors and Polygon Mesh 11

Equation (12.11) can be expressed in the form,

ax+ by + cz − d = 0 (12.12)

where (a, b, c) = (Nx, Ny, Nz), and d = (x1Nx+y1Ny +z1Nz); it is the general equation
of a plane. Conversely, if we are given the equation of a plane represented by

Ax+By + Cz +D = 0 (12.13)

we immediately know its normal, which is

N =

 A
B
C

 (12.14)

Also, suppose O = (0, 0, 0) is the origin of the coordinate system of the 3D space. Then

v1 = P1 −O =

 x1

y1
z1

 (12.15)

is the vector directing from the origin to the point P1, and v1 · n is the perpendicular
distance from the origin to the plane containing the point P1. This is equal to the value of
d of equation (12.12) divided by N (i.e. dN); this is shown in Figure 12-5 below.

N

d
N

x

y

P1
v1

O

Figure 12-5 Distance to a Plane

If we want to find the distance d0 from a point P0 = (x0, y0, z0) to the plane rather than
from the origin, we can first calculate v1 by

v1 = P1 − P0 =

 x1

y1
z1

−
 x0

y0
z0

 (12.17)

12 Equation of a Plane

Then the distance is gvien by

d0 = v1 · n
= x1nx + y1ny + z1nz − (x0nx + y0ny + z0nz)

= d− (ax0 + by0 + cz0)
|N|

= −ax0 + by0 + cz0 − d√
a2 + b2 + c2

(12.18)

Example

Find the unit normal to the plane described by the equaiton x+ 2y + z − 6 = 0 and
the distance from the point (1, 0, 1) to the plane.

Solution

1. A normal to the plane is given by

N =

 1
2
1

2. The unit normal to the plane is

n =
N
N

=
N√

12 + 22 + 12
=

1√
6

 1
2
1

3. The distance from (1, 0, 1) to the plane is given by

d0 = −1× 1 + 2× 0 + 1× 1− 6√
6

=
2
√

2√
3

Example

Find the unit normal to the plane containing the three points, (1, 2, 0), (1, 1, 1), and
(2, 0,−1).

Solution

Let P1 = (1, 2, 0), P2 = (1, 1, 1), and P3 = (2, 0,−1). When looking at the plane
formed by the three points, P1, P2, P3 appear anti-clockwise. Therefore, we form
the vectors

A = P2 − P1 =

 0
−1
1

B = P3 − P1 =

 1
−2
−1

Chapter 12 Normal Vectors and Polygon Mesh 13

A normal to the plane is given by

N = A×B =

 3
1
1

The unit normal is

n =
N
N

=
1

3.32

 3
1
1

 =

 0.90
0.30
0.30

12.3 Polygon Mesh Modeling

As we mentioned above, a polygon mesh is a collection of polygons and we can construct
any graphics object using a polygon mesh. In order for a mesh to be lit with appropriate
light, we need to know the normal to each polygon of the mesh. There are many ways to
model and render a polygon mesh. One simple way is to specify the mesh using a vertex
list, a normal list, and a face list. Lets consider the following example, which is taken from
the popular graphics textbook, “Computer Graphics Using OpenGL” by Hill and Kelly, to
illustrate this method. In this example, a barn is represented by seven polygons as shown
in Figure 12-6. The mesh consists of 10 vertices numbered from 0 to 9 and 7 polygons; the
arrows denote the 7 normals of the 7 polygons.

Figure 12-6 Polygon Mesh Representing a Barn

Tables 12-1 to 12-3 show the list of normals, the list of polygons and the associated
vertices of each polygon, and the list of vertices of the mesh respectively.

14 Polygon Mesh Modeling

Table 12-1 Normal List
Normal nx ny nz

0 -1 0 0
1 -0.707 0.707 0
2 -0.707 0.707 0
3 1 0 0
4 0 -1 0
5 0 0 1
6 0 0 -1

Table 12-2 Polygon List
Polygon Vertices Normals
0 (left) 0,5,9,4 0,0,0,0
1 (roof left) 3, 4, 9, 8 1,1,1,1
2 (roof right) 2, 3, 8, 7 2,2,2,2
3 (right) 1, 2, 7, 6 3,3,3,3
4 (bottom) 0, 1, 6, 5 4,4,4,4
5 (front) 5, 6, 7, 8, 9 5,5,5,5,5
6 (back) 0, 4, 3, 2, 1 6,6,6,6,6

Table 12-3 Vertex List
Vertex Coordinates

(x, y, z)
0 (0, 0, 0)
1 (1, 0, 0)
2 (1, 1, 0)
3 (0.5, 1.5, 0)
4 (0, 1, 0)
5 (0, 0, 1)
6 (1, 0, 1)
7 (1, 1, 1)
8 (0.5, 1.5, 1)
9 (0, 1, 1)

Implementation

To simplify the implementation of the mesh model, we make use of the C++ standard
template library (STL) class vector to implement the vertex, normal, and polygon lists. Of
course, the C++ STL vector class has a total different meaning from the vector3 class we
have presented above. The STL vector class is essentially a dynamic array that can work
with different data types. To use this class, we have to include the following header line in
our program:

#include <vector>

To specify a face (a polygon), we just need to specify the vertices of the polygon and
the corresponding normals; actually, we just need to specify the indices of the coordinates
of the vertices and normals as shown in Table 12-2. So we define the Polygon class to
represent a face, which consists of a vector to hold the vertex indices and a vector to hold
the normal indices:

class Polygon {
public:

int n; //n sides
vector <int> vertices; //vertex indices of vertexList;
vector <int> normals; //indices of normals at vertices

};

For those who are not familiar with C++ STL syntax, the statement vector <int> vertices
means we declare the variable vertices as a vector of data type int.

Chapter 12 Normal Vectors and Polygon Mesh 15

Now we can define the class Mesh to represent the polygon mesh, which has a vertex
list, a normal list and a face (polygon) list. Each of these lists is declared as a vector. The
vertex list is a vector of Point3; the normal list is a vector of Vector3, and the face list is a
vector of Polygon as shown Listing 12-6 below:

Program Listing 12-6: Mesh class
——————————————————————————————————–

#include <vector>
#include <fstream>
#include <GL/glut.h>
#include "Point3.h"
#include "Vector3.h"

using namespace std;

class Polygon {
public:

int n; //n sides
vector <int> vertices; //vertex indices of vertexList
vector <int> normals; //indices of normals at vertices

};

class Mesh {
public:

int nVertices; //number of vertices
int nNormals; //number of normals
int nFaces; //number of polygons
vector<Point3> vertexList;
vector<Vector3> normalList;
vector <Polygon> faceList; //each face is a polygon
Mesh();
bool readData(char fileName[]);
void renderMesh(); //render the mesh

};

——————————————————————————————————

Listing 12-7 below shows the implementation of the two member functions, readData()
and renderMesh() of the class Mesh. The function readData() reads the data from a file.
It first reads the number of vertices, the number of normals and the number of faces (poly-
gons) of the mesh. Secondly, it reads all the 3D coordinates of the vertices; the coordinates
of each vertex are read as a Point3 object, which is pushed onto the back of the vertex
list, vertexList, by the STL vector function push back(). (More precisely, the push back()
function creates a copy of the object and it inserts the copy into the list.) It then reads the
coordinates of the normals, each of which is read as a Vector3 object and is pushed onto the
back of the normal list, normalList. At the end, the number of vertices, the indices of the
vertices and normals of each face are read as a Polygon object and pushed onto the back of
the face list, faceList. The data of the file should be organized in the order that the function
reads them. Table 12-4 below shows the data and its organization of the data file of the
Barn example of Figure 12-6 and Tables 12-1 to 12-3.

16 Polygon Mesh Modeling

Table 12-4 Data of Barn Example
10 7 7 number of vertices, normals, faces
0 0 0 1 0 0 1 1 0 0.5 1.5 0 0 1 0 vertice coordinates (x, y, z)
0 0 1 1 0 1 1 1 1 0.5 1.5 1 0 1 1
-1 0 0 -0.707 0.707 0 0.707 0.707 0 normal coordinates (x, y, z)
1 0 0 0 -1 0 0 0 1 0 0 -1
4 0 5 9 4 0 0 0 0 a face with 4 vertices and normals
4 3 4 9 8 1 1 1 1 a face with 4 vertices and normals
4 2 3 8 7 2 2 2 2 a face with 4 vertices and normals
4 1 2 7 6 3 3 3 3 a face with 4 vertices and normals
4 0 1 6 5 4 4 4 4 a face with 4 vertices and normals
5 5 6 7 8 9 5 5 5 5 5 5 a face with 5 vertices and normals
5 0 4 3 2 1 6 6 6 6 6 6 a face with 5 vertices and normals

Program Listing 12-7: Implementation of Mesh Functions
——————————————————————————————————–

Mesh::Mesh()
{

nVertices = nNormals = nFaces = 0;
}

//Read mesh data from file
bool Mesh::readData (char fName[])
{

fstream ins; //file input stream
ins.open (fName, ios::in);
if(ins.fail()) return false; // error - can’t open file
if(ins.eof()) return false; // error - empty file
// read in number of vertices, normals, and faces
ins >> nVertices >> nNormals >> nFaces;
for (int i = 0; i < nVertices; i++){ //read vertices

Point3 p;
ins >> p.x >> p.y >> p.z;
vertexList.push_back (p); //insert into list at the tail

}
for (int i = 0; i < nNormals; i++){ //read normals

Vector3 v;
ins >> v.x >> v.y >> v.z;
normalList.push_back (v); //insert into list at tail

}
for (int i = 0; i < nFaces; i++) {

Polygon p;
ins >> p.n;
for (int j = 0; j < p.n; j++) {

int vertexIndex;
ins >> vertexIndex; //read vertice index
p.vertices.push_back (vertexIndex);

}
for (int j = 0; j < p.n; j++) {

int normalIndex;
ins >> normalIndex; //read normal index
p.normals.push_back (normalIndex);

}
faceList.push_back (p);

}

Chapter 12 Normal Vectors and Polygon Mesh 17

return true;
}

//render the mesh
void Mesh::renderMesh()
{

//Draw each polygon of the mesh
glEnable(GL_CULL_FACE);
glCullFace (GL_BACK); //do not render back faces

//draw one polygon at a time
for (int i = 0; i < nFaces; i++) {

glBegin (GL_POLYGON);
//specifying vertices of the polygon
for (int j = 0; j<faceList[i].n; j++){ //traverse the list

int vi = faceList[i].vertices[j]; //vertex index
int ni = faceList[i].normals[j]; //normal index
glNormal3f (normalList[ni].x, normalList[ni].y,

normalList[ni].z);
glVertex3f (vertexList[vi].x, vertexList[vi].y,

vertexList[vi].z);
} //for j

glEnd();
} //for i

}

——————————————————————————————————

The function renderMesh() renders the polygon mesh. We use the function glCull-
Face() to cull the back faces of the mesh. That is, we won’t display any face that is facing
inside the mesh (back face). Since each polygon of the face is saved in the face list, to
render the mesh, all we need to do is to traverse this list and render one polygon at a time
as shown in the code above. Listing 12-8 shows a code section that makes use the Mesh
functions to render a barn; the file name of the data is hard-coded to be data.txt. The ren-
dered barn is shown in Figure 12-7.

Program Listing 12-8: Sample Code for Rendering Barn of Figure 12-6
——————————————————————————————————–

void display(void)
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-2.0, 2.0, -2.0, 2.0, 0.1, 100);
glMatrixMode(GL_MODELVIEW); // position and aim the camera
glLoadIdentity();
gluLookAt(8.0, 8.0, 8.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(0, 0, 0);
barn.renderMesh();
glFlush();

}

int main(int argc, char *argv[])
{

if (!barn.readData ("data.txt")) { //hard-coded filename
cout << "Error opening file" << endl;
return 1;

18 3D Graphics Formats

}

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize(500, 500);
glutInitWindowPosition(100, 100);
glutCreateWindow("Barn");
init();
glutDisplayFunc(display);
glutKeyboardFunc(keyboard);
glClearColor(1.0f, 1.0f, 1.0f, 0.0f); //white background
glViewport (0, 0, 500, 500);

glutMainLoop();

return 0;
}

——————————————————————————————————

Figure 12-7 Rendered Barn of Figure 12-6

12.4 COLLADA

12.4.1 3D Graphics Formats

We mentioned that we can represent any 3D graphical object by a polygon mesh. Very
often a graphical object is created by an artist using a graphics application package such
as Blender or Maya; the object is represented by a mesh, which will be saved in a file
along with other attributes of the object such as lighting, field of view, camera position and
texture. A programmer can parse the file, transform and render the object using OpenGL.
In order that the programmer can parse the object effectively, the data of object created

Chapter 12 Normal Vectors and Polygon Mesh 19

by the artist need to be saved in an agreed upon format. There are quite a lot of popular
graphics file format in the market. The following table lists a few most commonly used
formats and their host organizations.

Table 12-5 Graphics Formats
format affiliation
3DS 3D Studio
BLEN BLENDER
DAE COLLADA
DXF AutoCAD
LWO Lightwave
OBJ Wavefront Technologies
SKP Google sketchup
WRL VRML

Each of the formats listed in Table 12-5 has its special characteristics, goals, virtues and
shortcomings. Among all of these formats, we are most interested in COLLADA which is
the only format we shall use and discuss in this chapter (http://collada.org). COLLADA,
short for COLLAborative Design Activity, is an open-source 3D graphics format managed
by the Khronos Group (http://www.khronos.org/), which is a nonprofit industry consortium
whose main tasks are to create open standards and royalty-free APIs to enhance the author-
ing and acceleration of parallel computing, graphics and dynamic media on a wide variety
of platforms and devices. COLLADA is royalty-free and is an XML-based schema. XML,
short for Extensible Markup Language, is a metalanguage using extra “markup” (infor-
mation enclosed between angle brackets) for defining a set of rules to encode documents
in a format that can be understood by humans and machines easily. It is produced and
maintained by the World Wide Web Consortium (W3C).

COLLADA defines an XML database schema that helps 3-D authoring applications to
freely exchange digital assets without loss of information, and enables multiple software
packages to be combined into powerful tool chains. Many large technology companies
or organizations support the work of COLLADA. These include Sony Computer Entertain-
ment, NVIDIA, ATI, Softimage, Autodesk, Google, and Intel. Moreover, some major game
engines such as OGRE, C4 Engine, AgentFX, Multiverse, PhyreEngine, and CryEngine
also support COLLADA.

12.4.2 COLLADA Features

One main feature of COLLADA is that it is an open-source standard. Its schema and
specifications are freely available from The Khronos Group. The standard allows graphics
software packages interchange data in an effective way. One can import art assets cre-
ated with other software packages or to export them to other packages. An art asset or
sometimes referred to as media asset in computer graphics is an individual piece of digital
media used in the creation of a larger graphics scene. Art assets include synthetic and pho-
tographic bitmaps, 3D models of meshes, shaders, motion captured or artificial animation
data, and video samples. The term “art” here refers to a piece of work created from a piece
of software; its data are not necessarily represent anything artistic. COLLADA supports a
wide variety graphics and related features, which include the following:

1. Mesh geometry

20 COLLADA Features

2. Transform hierarchy (rotation, translation, shear, scale, matrix)
3. Effects
4. Shaders (Cg, GLSL, GLES)
5. Materials
6. Textures
7. Lights
8. Cameras
9. Skinning

10. Animation
11. Physics (rigid bodies, constraints, rag dolls, collision, volumes)
12. Instantiation
13. Techniques
14. Multirepresentations
15. Assets
16. User data
17. Kinematics
18. Boundary representations (B-reps)
19. Geographic coverage
20. Custom image initialization
21. Math formulas

Since a COLLADA file is a text file consisting of data with XML tags, all COLLADA
documents can be edited by an ordinary text editor such as vi, notepad and emacs. After
we have edited a COLLADA document, we should always validate it manually to ensure
that the document is correctly formatted. A COLLADA file ends with extension “.dae” and
there are a couple of ways to validate a COLLADA document.

Validating COLLADA Document

We can use the XML tool, xmllint of the libxml package, which we will discuss below,
to validate a COLLADA document against the COLLADA schema. Suppose we have a
COLLADA file called “cube.dae”. We check whether this file is correctly formatted using
a command like the following:

$xmllint --noout --schema \
http://www.khronos.org/files/collada_schema_1_4 cube.dae

It may be more convenient if we first download the schema and save it as a local file;
this can be done by the command,

$wget http://www.khronos.org/files/collada_schema_1_4

and then rename the downloaded file to “colladaSchema.xsd”:

$mv collada_schema_1_4 colladaSchema.xsd

Then we can validate the document using the command

$xmllint --noout --schema colladaSchema.xsd cube.dae

The option “–noout” is used to prevent superfluous output. If the file is valid, the following
message is displayed:

Chapter 12 Normal Vectors and Polygon Mesh 21

cube.dae validates

If the document is invalid, we may see a message similar the following:

cube.dae:9: element source_data: Schemas validity error : Element
’{http://www.collada.org/2005/11/COLLADASchema}source_data’:
’file://’ is not a valid value of the atomic type ’xs:anyURI’.
cube.dae:196: element instance_rigid_body: Schemas validity error :
Element
’{http://www.collada.org/2005/11/COLLADASchema}instance_rigid_body’:
Missing child element(s). Expected is
({http://www.collada.org/2005/11/COLLADASchema}technique_common).
cube.dae:194: element physics_scene: Schemas validity error : Element
’{http://www.collada.org/2005/11/COLLADASchema}physics_scene’:
Missing child element(s). Expected is one of (
{http://www.collada.org/2005/11/COLLADASchema}instance_physics_model,
{http://www.collada.org/2005/11/COLLADASchema}technique_common).
cube.dae fails to validate

12.4.3 COLLADA Format

In the subsequent discussions of COLLADA, we will refer to a COLLADA file called
“cube.dae” to explain the basic format of COLLADA. The file “cube.dae” is exported from
the free open-source 3D content creation suite, Blender (http://www.blender.org/), version
2.61. This file is part of the resource distribution at this book’s web site at

http://www.forejune.com/stereo/.

Actually, you can easily obtain a similar file from Blender which always starts with a default
cube object similar to the one we have used. We will discuss briefly the Blender suite later
in this chapter.

Like viewing any COLLADA file, we can view “cube.dae” with a text editor such as vi
and emacs, or we can view it using a browser such as Firefox that supports XML. If we
view it with a browser, we should see the structure of the file which looks like the following:

-<COLLADA version="1.4.1">
-<asset>

-<contributor>
<author>Blender User</author>
<authoring_tool>Blender 2.61.0 r42614</authoring_tool>

</contributor>
<created>2012-01-04T10:45:03</created>
<modified>2012-01-04T10:45:03</modified>
<unit name="meter" meter="1"/>
<up_axis>Z_UP</up_axis>

</asset>
-<library_cameras>
-<camera id="Camera-camera" name="Camera">

-<optics>
-<technique_common>

-<perspective>
<xfov sid="xfov">49.13434</xfov>
<aspect_ratio>1.777778</aspect_ratio>
<znear sid="znear">0.1</znear>
<zfar sid="zfar">100</zfar>

22 COLLADA Format

</perspective>
</technique_common>

</optics>
</camera>

</library_cameras>
............
-<scene>

<instance_visual_scene url="#Scene"/>
</scene>

</COLLADA>

The ‘-’ sign in front of a tag indicates the beginning of a structure (node). We can click
on the ‘-’ sign to collapse the structure, which also changes the ‘-’ sign to ‘+’. For example,
when we click on the ‘-’ sign in front of the <COLLADA> tag, the whole document will
collapse to a single line like the following:

+<COLLADA version="1.4.1"> </COLLADA>

Clicking on the ‘+’ sign will expand the document.
XML organizes data in a tree structure and refers to each structure enclosed by a begin-

ning tag and ending tag as a node. For example, the <mesh> node starts with <mesh>
and ends with </mesh>. The <COLLADA> node is is the root of a COLLADA docu-
ment. COLLADA defines a lot of nodes to describe various graphics object attributes. As
an introduction, we only consider a few simple nodes. We list some of the COLLADA
nodes below.

Reading Geometry Data

1. <library geometries>:
This node is a library that contains geometry type nodes that define geometries in the
scene.

2. <mesh>:
This node contains the geometry data of the mesh. It usually contains a few<source>
child nodes that define the data of vertices, normals and texture.

3. <source>:
This node contains child nodes such as <float array> and <technique common>
that define the geometry data.

4. <float array>:
This node contains floating point numbers for defining various attributes, which are
described by a sibling node of type <technique common>.

5. <technique common>:
This node’s <accessor> child node specifies the data usage for the arrays defined
in <float array> or <Name array>. (<Name array> is similar to <float array>
except that it specifies strings instead of floating point numbers.)

In the file “cube.dae”, you will find one<library geometries> node, which has one<geometry>
child node. The <geometry> node has one <mesh> child node that defines the poly-
gon mesh of the cube object. The following is a <source> node example taken from
“cube.dae”, which defines the data of the vertices of a cube. As you can imagine, a cube
has 8 vertices, and each vertex has 3 coordinate values. So there are totally 24 data values.

Chapter 12 Normal Vectors and Polygon Mesh 23

<source id="Cube-mesh-positions">
<float_array id="Cube-mesh-positions-array" count="24">1 1 -1 1 -1 -1

-1 -0.98 -1 -0.97 1 -1 1 0.95 1 0.94 -1.01 1 -1 -0.97 1 -1 1 1
</float_array>
<technique_common>

<accessor source="#Cube-mesh-positions-array" count="8" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>

</accessor>
</technique_common>

</source>

In this example, the<float array> node defines 24 floats (i.e. count=“24”). The<accessor>
node tells us how to interpret the data; it has three <param> child nodes describing the
(x, y, z) coordinates of a vertex. The attribute stride=“3” means the next vertex is 3 floats
away from the current one; the count=“8” attribute indicates that there are 8 vertices. In
summary, the <source> node describes that there are 8 vertices, each with 3 components,
which are saved in <float array> as 24 float values; the components are called “X”, “Y”
and “Z”. (If the <source> contains texture coordinates, then the components would be
called “S”, “T” and “P”.) Actually, such a node could also describe the (x, y, z) coordi-
nates of a normal vector. To distinguish whether we are processing a vertice or a normal
vector, we have to read another child node of <mesh> called <vertices> to find the ver-
tices source; this node contains a child node named <input> with a semantic attribute of
“POSITION” value.

<vertices id="Cube-mesh-vertices">
<input semantic="POSITION" source="#Cube-mesh-positions"/>

</vertices>

If you navigate through the file “cube.dae”, you will find 2 <source> nodes (they are
children of <mesh>). One of them defines the vertices as discussed above. You might
have guessed that the other <source> node defines the normal coordinates. Indeed, your
guess is right; the normal<source> structure is very similar to that of the vertex<source>.
The following is the corresponding normal segment taken from the file “cube.dae”:

<source id="Cube-mesh-normals">
<float_array id="Cube-mesh-normals-array" count="18">0 0 -1 0 0 1

1 -2.83e-7 0 -2.83e-7 -1 0 -1 2.23e-7 -1.34e-7 2.38e-7 1 2.08e-7
</float_array>
<technique_common>

<accessor source="#Cube-mesh-normals-array" count="6" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>

</accessor>
</technique_common>

</source>

As you can see, a cube has 6 faces and thus we have 6 normals, one for each face. Therefore,
the accessor source count is “6”. Since each normal is specified by 3 numbers, we need a
total of 6× 3 = 18 data values. So the float array count is “18”.

In the file “cube.dae”, another child of <source> is the <polylist> node. You might
have guessed that this node describes the list of polygons of the mesh. Again, your guess
is right. This node defines the polygon (face) list of the mesh just as we discuss in Section
12.3. The following shows the xml code of this node taken from the file “cube.dae”.

24 COLLADA Format

<polylist material="Material1" count="6">
<input semantic="VERTEX" source="#Cube-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="#Cube-mesh-normals" offset="1"/>
<vcount>4 4 4 4 4 4 </vcount>
<p>0 0 1 0 2 0 3 0 4 1 7 1 6 1 5 1

0 2 4 2 5 2 1 2 1 3 5 3 6 3 2 3
2 4 6 4 7 4 3 4 4 5 0 5 3 5 7 5</p>

</polylist>

In the node <polylist>, we see that count=“6” indicating that the list has 6 polygons.
Inside the <polylist> node, the child node vcount indicates “vertex count”, the number of
vertices a polygon (face) has. Obviously, each face of a cube has 4 vertices. That is why we
see six 4’s for the six faces in the <vcount> node. The <p> node consists of the indices
of the vertex and the normal coordinates of each of the six faces. The two <input> nodes
tell us which is which. For each polygon, the first index is for the vertex tuple (offsets=“0”)
and the second index is for the normal tuple. So the first polygon is specified by

0 0 1 0 2 0 3 0

meaning that the polygon consists of vertices 0, 1, 2, and 3, and the normal at each of the
vertex is normal 0.

From these data, we can reconstruct tables similar to those of Table 12-1 to 12-3, spec-
ifying a normal list, a polygon list and a vertex list. The following are the tables thus
constructed.

Table 12-6 Vertex List
Vertex Coordinates

(x, y, z)
0 (1, 1,−1)
1 (1,−1,−1)
2 (−1,−0.98,−1)
3 (−0.97, 1,−1)
4 (1, 0.95, 1)
5 (0.94,−1.01, 1)
6 (−1,−0.97, 1)
7 (−1, 1, 1)

Table 12-7 Normal List

Normal (nx,ny , nz)

0 (0, 0,−1)
1 (0, 0, 1)
2 (1,−2.83× 10−7, 0)
3 (−2.83× 10−7,−1, 0)
4 (−1,−2.23× 10−7,−1.34× 10−7)
5 (2.38× 10−7, 1, 2.08× 10−7)

Table 12-8 Polygon List
Polygon vcount Vertices Normals

0 4 0, 1, 2, 3 0,0,0,0
1 4 4, 7 , 6, 5 1,1,1,1
2 4 0, 4, 5, 1 2,2,2,2
3 4 1, 5, 6, 2 3,3,3,3
4 4 2, 6, 7, 3 4,4,4,4
5 4 4, 5, 3, 7 5,5,5,5

For example, face (polygon) 2 has 4 vertices, which are vertex 0, 4, 5, and 1 and the
coordinates of these vertices are shown in Table 12-6 as

(1, 1,−1), (1, 0.95, 1), (0.94,−1.01, 1), (1,−1,−1)

The normal to this face is normal 2 with components shown in Table 12-7 as

(1,−2.83× 10−7, 0)

Chapter 12 Normal Vectors and Polygon Mesh 25

12.4.3 Parsing COLLADA Files

After understanding the basic features of a COLLADA file, the next thing we want to do
is to extract the mesh data and process or render them using our OpenGL programs. The
collada.org provides a package called COLLADA Document Object Model (DOM) for
loading, saving, and parsing COLLADA files. The package is a C++ library which provides
rich features to process COLLADA data. However, this package is huge and require special
libraries such as the Boost Filesystem library to build; it is fairly difficult to compile. For
beginners who are interested to work in the open-source environment, we want something
simpler to accomplish our tasks of studying, understanding, and developing graphics appli-
cations with COLLADA files. Since a COLLADA file is basically an xml file, to parse it,
all we need is a simple xml parser. There are quite a few C/C++ open-source xml parsers.
The one we have chosen to study and use is the libxml library maintained by Daniel Veil-
lard (http://xmlsoft.org/). Actually, the one we are going to use is libxml2, which is a newer
version of the library. Interestingly, the DOM package is also built on top of libxml.

12.5 The libxml Library

12.5.1 Introduction

The libxml2 library, a newer version of libxml, is an XML parser and toolkit developed
for the Gnome project. It is written in C and is free software available under the MIT
License. It is known to be fast and very portable, working effectively on a variety of
systems, including Linux, Unix, Windows, CygWin, MacOS, MacOS X, RISC Os, OS/2,
VMS, QNX, MVS, and VxWorks.

According to its offical website at http://xmlsoft.org/, libxml2 implements a number of
existing standards related to markup languages:

1. the XML standard: http://www.w3.org/TR/REC-xml
2. Namespaces in XML: http://www.w3.org/TR/REC-xml-names/
3. XML Base: http://www.w3.org/TR/xmlbase/
4. RFC 2396 : Uniform Resource Identifiers http://www.ietf.org/rfc/rfc2396.txt
5. XML Path Language (XPath) 1.0: http://www.w3.org/TR/xpath
6. HTML4 parser: http://www.w3.org/TR/html401/
7. XML Pointer Language (XPointer) Version 1.0: http://www.w3.org/TR/xptr
8. XML Inclusions (XInclude) Version 1.0: http://www.w3.org/TR/xinclude/
9. ISO-8859-x encodings, as well as rfc2044 [UTF-8] and rfc2781 [UTF-16] Unicode

encodings, and more if using iconv support
10. part of SGML Open Technical Resolution TR9401:1997
11. XML Catalogs Working Draft 06 August 2001:

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html
12. Canonical XML Version 1.0: http://www.w3.org/TR/xml-c14n and the Exclusive

XML Canonicalization CR draft http://www.w3.org/TR/xml-exc-c14n
13. Relax NG, ISO/IEC 19757-2:2003, http://www.oasis-open.org/committees/relax-ng/spec-

20011203.html
14. W3C XML Schemas Part 2: Datatypes REC 02 May 2001
15. W3C xml:id Working Draft 7 April 2004

26 Reading and Parsing an XML File

The libxml web site provides coding examples and details of the API’s of the library. There
are 3 main API modules; the Parser API provides interfaces, constants and types related
to the XML parser; the Tree API allows users to access and process the tree structures of
an XML or HTML document; and the Reader API provides functions to read, write, and
validate XML files, and allows users to extract the data and attributes recursively.

Moreover, the web site also provides some information about XML, detailed enough to
understand and use libxml.

12.5.2 Reading and Parsing an XML File

We can find practical coding examples of libxml2 at

http://xmlsoft.org/examples

We will first discuss how to read and parse an XML file. We present a program called
“readxml.cpp” to illustrate the concept; most of the code we are presenting is from the
above site’s program “reader1.c”, which uses the function xmlReaderForFile() to parse
an XML file and print out the information about the nodes found in the process. To use the
function, we have to include the header statement,

#include <libxml/xmlreader.h>

For simplicity, we hard-code the file name for testing to be “cube.dae”; this is the COL-
LADA file we have used in the above section. In this program, the main() function will
open the file “cube.dae” for parsing:

int main()
{

// Initializes library and check whether correct version is used.
LIBXML_TEST_VERSION

const char filename[] = "cube.dae";
xmlTextReaderPtr reader = xmlReaderForFile(filename, NULL, 0);
if (reader == NULL) {

fprintf(stderr, "Unable to open %s\n", filename);
return 1;

}

int ret = xmlTextReaderRead(reader);
while (ret == 1) {

processNode(reader);
ret = xmlTextReaderRead(reader);

}
xmlFreeTextReader(reader);
if (ret != 0) {

fprintf(stderr, "%s : failed to parse\n", filename);
}

//Cleanup function for the XML library.
xmlCleanupParser();

return 0;
}

The function xmlReaderForFile() is used to open the file; this function can parse an XML
file from the filesystem or the network (the first input parameter can be an URL); it returns

Chapter 12 Normal Vectors and Polygon Mesh 27

a pointer reader, pointing to the new xmlTextReader or NULL if an error has occurred.
This returned reader will be used as a handle for further processing of the document.

Next, the function xmlTextReaderRead() is used to move the position of the current
node pointer to the next node in the stream, exposing its properties; it returns 1 if the node
was read successfully, and 0 if there are no more nodes to read, or -1 in case of error.
Therefore, we setup a while loop so that as long as the returned value is 1 (node read suc-
cessfully), we call the function processNode() discussed below to process the information
contained in the node. When finished reading the file, the function xmlFreeTextReader()
is called to deallocate all the resources associated with the reader. At the end, the func-
tion xmlCleanupParser() is called to clean up the memory allocated by the library; this
function name is somewhat misleading as it does not clean up parser state. It is a cleanup
function for the XML library. It tries to reclaim all related global memory allocated for the
library processing but it does not deallocate any memory associated with the document.

One can write the function processNode() to process the information of the current node
in any way the application requires. In our example, we just print out the attributes and the
value of the node. We used the following libxml2 functions to obtain the information:

1. xmlTextReaderConstValue() reads the text value of the current node; the function
returns the string of the value or NULL if the value is not available. The result will
be deallocated on the next read operation.

2. xmlTextReaderDepth() reads the depth of the node in the tree; it returns the depth
or -1 in case of error.

3. xmlTextReaderNodeType() gets the node type of the current node; it returns the
xmlNodeType of the current node or -1 in case of error. The node type is defined at
the link,

http://www.gnu.org/software/dotgnu/pnetlib-doc/System/Xml/XmlNodeType.html

4. xmlTextReaderIsEmptyElement() checks whether the current node is empty; it
returns 1 if empty, 0 if not and -1 in case of error.

5. xmlTextReaderHasValue() is used to check whether the node can have a text value;
it returns 1 if true, 0 if false, and -1 in case or error.

When we compile the program, we need to link it with the libxml2 library. We may use
a command similar to the following to generate the executable:

g++ -o readxml readxml.cpp -lxml2 -L/{\it libxml2_dir}/libxml2/lib \
-I/{\it libxml2_dir}/libxml2/include/libxml2

When “readxml” is executed, it will read the COLLADA file “cube.dae” and prints out the
information of each node, which looks like the following output:

1: 0 1 COLLADA 0 0
2: 1 14 #text 0 1 value=

3: 1 1 asset 0 0
4: 2 14 #text 0 1 value=

5: 2 1 contributor 0 0
6: 3 14 #text 0 1 value=

7: 3 1 author 0 0
8: 4 3 #text 0 1 value= Blender User
9: 3 15 author 0 0
10: 3 14 #text 0 1 value=

28 Parsing a File To a Tree

11: 3 1 authoring_tool 0 0
12: 4 3 #text 0 1 value= Blender 2.61.0 r42614
13: 3 15 authoring_tool 0 0
14: 3 14 #text 0 1 value=

15: 2 15 contributor 0 0
16: 2 14 #text 0 1 value=

17: 2 1 created 0 0
18: 3 3 #text 0 1 value= 2012-01-04T10:45:03
19: 2 15 created 0 0
20: 2 14 #text 0 1 value=
.....
39: 4 1 technique_common 0 0
40: 5 14 #text 0 1 value=

41: 5 1 perspective 0 0
42: 6 14 #text 0 1 value=

43: 6 1 xfov 0 0
44: 7 3 #text 0 1 value= 49.13434
45: 6 15 xfov 0 0
46: 6 14 #text 0 1 value=

47: 6 1 aspect_ratio 0 0
48: 7 3 #text 0 1 value= 1.777778
49: 6 15 aspect_ratio 0 0
50: 6 14 #text 0 1 value=

51: 6 1 znear 0 0
52: 7 3 #text 0 1 value= 0.1
53: 6 15 znear 0 0
54: 6 14 #text 0 1 value=
.....
609: 1 15 library_visual_scenes 0 0
610: 1 14 #text 0 1 value=

611: 1 1 scene 0 0
612: 2 14 #text 0 1 value=

613: 2 1 instance_visual_scene 1 0
614: 2 14 #text 0 1 value=
615: 1 15 scene 0 0
616: 1 14 #text 0 1 value=
617: 0 15 COLLADA 0 0

12.5.3 Parsing a File To a Tree

The example here, “treexml.cpp” is based on the program “tree1.c” example the libxml2
web site. The program parses an xml file to a tree. It first uses xmlDocGetRootElement()
to get the root element. Then it scans the document and prints all the element names in
document order. In the program, we have to include the following header statements:

#include <libxml/parser.h>
#include <libxml/tree.h>
#include <libxml/xmlreader.h>

Chapter 12 Normal Vectors and Polygon Mesh 29

For simplicity, we again hard-code “cube.dae” as our file name. The main() of the program
uses xmlReadFile(), which belongs to the parser API of libxml2, to open “cube.dae”; this
function parses an XML file from the filesystem or the network; it returns a pointer pointing
to the document tree and NULL on failure. The main() function then uses xmlDocGet-
RootElement() to obtain the pointer pointing to the root of the document tree and calls
print element names() recursively to print out all the element names of the nodes in the
tree:

int main()
{

xmlDoc *doc = NULL;
xmlNode *root = NULL;
const char filename[] = "cube.dae";

// Initialize library and check whether correct version is used.
LIBXML_TEST_VERSION
// parse the file and get the DOM
doc = xmlReadFile(filename, NULL, 0);

if (doc == NULL) {
printf("error: could not parse file %s\n", filename);
return 1;

}

// Get the root element node
root = xmlDocGetRootElement(doc);

//starts printing from the root at level -1
print_element_names(root, -1);

xmlFreeDoc(doc);
xmlCleanupParser();

return 0;
}

The function print element names() takes in two input arguments; the first is a pointer
pointing to an xmlDoc node, a root of a subtree of the document tree. The second argument
is the relative level of the node. each time the pointer moves a level deeper, the value of
level is incremented by one; a ‘+’ is printed for the advance of a level along with the node
element name:

void print_element_names(xmlNode *root, int level)
{

xmlNode *cur_node = NULL;
++level; //one level deeper in next call

for (cur_node = root; cur_node; cur_node = cur_node->next) {
if (cur_node->type == XML_ELEMENT_NODE) {

for (int i = 0; i < level; i++)
printf(" +"); //signifies level of node

printf(" %s\n", cur_node->name);
}
print_element_names(cur_node->children, level);

}
}

Again, this program can be easily compiled and linked with a command like “g++ -o tre-
exml treexml.cpp -lxml2”. When we run the executable “treexml”, outputs similar to the
following will be generated:

COLLADA

30 Searching For a Node

+ asset
+ + contributor
+ + + author
+ + + authoring_tool
+ + created
+ + modified
+ + unit
+ + up_axis
+ library_cameras
+ + camera
+ + + optics
+ + + + technique_common
+ + + + + perspective
+ + + + + + xfov
+ + + + + + aspect_ratio
+ + + + + + znear
+ + + + + + zfar
+ library_lights
+ + light
+ + + technique_common
+ + + + point
+ + + + + color
+ + + + + constant_attenuation
+ + + + + linear_attenuation
+ + + + + quadratic_attenuation
+ + + extra
+ + + + technique
............
+ library_visual_scenes
+ + visual_scene
+ + + node
+ + + + translate
+ + + + rotate
+ + + + rotate
+ + + + rotate
+ + + + scale
+ + + + instance_geometry
+ + + + + bind_material
+ + + + + + technique_common
+ + + + + + + instance_material
+ + + node
+ + + + translate
+ + + + rotate
+ + + + rotate
+ + + + rotate
+ + + + scale
+ + + + instance_camera
+ scene
+ + instance_visual_scene

12.5.4 Searching For a Node

A COLLADA file is an XML file organizing information in a tree structure. The previous
section shows how to parse such a file into a tree. Given the tree, we can search for a par-
ticular node and extract the information from the node or the subtree rooted at the searched
node. Here, we discuss how to search for a node and a few ways to extract the information
of the node. Again, we use the COLLADA file “cube.dae” generated by Blender in our
example.

Chapter 12 Normal Vectors and Polygon Mesh 31

Given the root of a subtree of the document, we can search a target node specified by
a key string. We first search the root, its siblings and all the children of them and then
we search recursively the subtrees of each child until the target is found. This can be
accomplished by the following function searchNode(), which returns a pointer to the node
associated with the target key or NULL if the target is not found:

xmlNode *searchNode (xmlNode *a_node, char target[])
{

xmlNode *nodeFound = NULL;

for (xmlNode *cur = a_node; cur; cur= cur->next) {
if (cur->type == XML_ELEMENT_NODE) {

if (!xmlStrcmp (cur->name, (const xmlChar*)target)) {
printf("Found %s \n", cur->name);
nodeFound = cur;
break;

}
}
//search recursively until node is found.
if (nodeFound == NULL && cur != NULL)

nodeFound = searchNode (cur->children, target);
}

return nodeFound;
}

In practice, there could be more than one node that has the same target key. If we need
all the targeted nodes, we can save the node in a vector rather than breaking out of the
for loop of searchNode() after one node has been found. The following main code first
searches for nodes associated with key strings “source” and print out the subtrees rooted
at the “source” nodes. It then searches for “float array” from the first “source” subtree.
If the node is found, it calls parseNode() to print out the data of the node. The function
parseNode() makes use of xmlNodeListGetString() to get the content of the node; this
function builds the string equivalent to the text contained in the node list made of TEXTs
and ENTITY REFs; it returns a pointer to the string copy, which must be freed by the caller
with xmlFree():

void parseNode (xmlDocPtr doc, xmlNodePtr cur)
{

xmlChar *key;
cur = cur->xmlChildrenNode;
while (cur != NULL) {

key = xmlNodeListGetString(doc, cur, 1);
printf(" %s\n", key);
xmlFree(key);
cur = cur->next;

}
return;

}

int main(int argc, char **argv)
{

xmlDoc *doc = NULL;
xmlNode *root_element = NULL;
const char filename[] = "cube.dae";

// Initialize library and check whether correct version is used.
LIBXML_TEST_VERSION

// parse the file and get the DOM

32 Searching For a Node

doc = xmlReadFile(filename, NULL, 0);

if (doc == NULL) {
printf("error: could not parse file %s\n", filename);

}
// Get the root element node
root_element = xmlDocGetRootElement(doc);

xmlNode *nodeFound;

nodeFound = searchNode (root_element, "source");
//print subtrees rooted at "source"
print_element_names(nodeFound, -1);
//find "float_array" within first "source" subtree
if (nodeFound != NULL){

nodeFound = searchNode (nodeFound, "float_array");
}
//print out data of node found
if (nodeFound != NULL)

parseNode (doc, nodeFound);
printf("---\n");
......

}

When this code is executed, it will generate an output similar to the following:

Found source
source
+ float_array
+ technique_common
+ + accessor
+ + + param
+ + + param
+ + + param
source
+ float_array
+ technique_common
+ + accessor
+ + + param
+ + + param
+ + + param
vertices
+ input
polylist
+ input
+ input
+ vcount
+ p
Found float_array
1 1 -1 1 -1 -1 -1 -0.9999998 -1 -0.9999997 1 -1 1 0.9999995 1
0.9999994 -1.000001 1 -1 -0.9999997 1 -1 1 1

If you use xmlNodeListGetString() to find and print the “content” of a node, very often
you may find that an empty line is printed. According to the documentation of libxml2, the
empty lines of the elements that do not have text content but have child elements in them
are actually part of the document, even if they are supposedly only for formatting; libxml2
could not determine whether a text node with blank content is for formatting or data for
the user. The application programmer has to know whether the text node is part of the
application data or not and has to do the appropriate filtering. On the other hand, libxml2
provides a function called xmlElemDump() that allows a user to dump the subtree rooted

Chapter 12 Normal Vectors and Polygon Mesh 33

at the specified node to a file; actually, we can use the function to dump to a pipe and use
some popular text processing utilites such as sed and awk to further parse it, or we can
direct it to a buffer using the C function setvbuf for further processing in our program.
The following code segment of main() shows how this is done. (For simplicity, we have
omitted some error-checking code.)

int main(int argc, char **argv)
{

xmlDoc *doc = NULL;
doc = xmlReadFile(filename, NULL, 0);
......
printf("---\n");

nodeFound = searchNode (root_element, "library_geometries");
nodeFound = searchNode (nodeFound, "vertices");
if (nodeFound == NULL) {

printf("\nvertices Node not found!\n");
return 1;

}
//send information to screen
xmlElemDump (stdout, doc, nodeFound);
printf("\nparsing the node:\n");
//open a pipe, which will execute the awk command when writing
FILE *fp = popen ("awk ’BEGIN {} {for(i=NF;i > 0;i--)

printf(\"%s\\n\",$i); } END {} ’", "w");
//print the parsed text to screen
xmlElemDump (fp, doc, nodeFound);
pclose (fp); //close the pipe

printf("---\n");

//search a new node
nodeFound = searchNode (nodeFound, "polylist");
if (nodeFound == NULL) return 1;
//open a temporary file
FILE *f = fopen ("temp.$$$", "w");
const int bufsize = 20000;
char buf[bufsize]; //create a buffer
bzero (buf, bufsize); //set buffer to zeros
//send the output stream to buf before writing to "temp.$$$"
setvbuf (f, buf, _IOFBF, bufsize);

//dump the element of node to the buffer
xmlElemDump (f, doc, nodeFound);
printf("%s\n", buf); //print content of node

/*free the document */
xmlFreeDoc(doc);

xmlCleanupParser();

return 0;
}

In the code, we first search for the “library geometries” node and then search this subtree
to find the “vertices” node. Then we use the statement “xmlElemDump (stdout, doc,
nodeFound);” to dump the subtree rooted at “vertices” to screen. To demonstrate how to
parse the information, we open a pipe using popen(), which has the prototype,

FILE *popen(const char *command, const char *type);

34 Blender

where command is the command to be issued and type is a string indicating the operation
mode with “r” indicating reading data from the pipe obtained from output of command, and
“w” indicating writing data to the pipe which sends them to the command. In our example
the command is to use awk to parse the text.

The last part of the code demonstrates the dumping of a subtree to a buffer. We first
search for the “polylist” node. After we have found the node, we open a temporary file
named “temp.$$$” for writing information. We declare a buffer named buf and use the
setvbuf() to buffer the file output so that the node information will be dumped to buf when
the function xmlElemDump() is called. Then we print out the text stored in buf.

When this code is executed, outputs similar to the following will be generated:

Found library_geometries
Found vertices
<vertices id="Cube-mesh-vertices">

<input semantic="POSITION" source="#Cube-mesh-positions"/>
</vertices>

parsing the node:
id="Cube-mesh-vertices">
<vertices
source="#Cube-mesh-positions"/>
semantic="POSITION"
<input
</vertices>

Found polylist
<polylist material="Material1" count="6">

<input semantic="VERTEX" source="#Cube-mesh-vertices" offset="0"/>
<input semantic="NORMAL" source="#Cube-mesh-normals" offset="1"/>
<vcount>4 4 4 4 4 4 </vcount>
<p>0 0 1 0 2 0 3 0 4 1 7 1 6 1 5 1 0 2 4 2 5 2 1 2 1 3 5 3 6 3 2

3 2 4 6 4 7 4 3 4 4 5 0 5 3 5 7 5</p>
</polylist>

12.6 Blender

Blender is an open-source 3D content creation suite, free and available for all major oper-
ating systems including Linux, Windows and Mac OS/X under the GNU General Public
License (http://www.blender.org/). One can do and create a lot of amazing graphics using
Blender. To name a few, we can use Blender to model a human head basemesh that can eas-
ily be used as a starting point for sculpting, to create a modern wind turbine with lighting,
to model an entire building exterior from photo references, to use simple shapes and alpha
masked leaves to create a tree with realistic look, or to create an animated movie. There
are a lot of tutorials on the Web about using Blender. For example, besides the official site
(www.blender.org), the site of BlenderArt Magazine (http://blenderart.org/) also offers
a few good tutorials. Our COLLADA file “cube.dae” used in the examples of the previ-
ous sections is created using Blender. Figure 12-8 shows a screen capture of the Blender
interface when creating the cube.

Chapter 12 Normal Vectors and Polygon Mesh 35

Figure 12-8 Blender Interface

With the help of Blender, we can largely extend our capabilities of creating graphics
using OpenGL and C/C++. Very often, our application may need a graphics object that
is difficult to create from sketch using OpenGL; in this case, we can use Blender to cre-
ate the object and save it as a COLLADA file. Our C/C++ OpenGL program can parse
the COLLADA file using libxml2 discussed above, and further fine-tune or process it with
OpenGL commands. Or sometimes we can use Blender to import a graphics object from
the Internet saved in another 3D file format, and use Blender to export the file to the COL-
LADA format, which can then be parsed and rendered by our application. (The site at
http://www.hongkiat.com/blog/60-excellent-free-3d-model-websites/ lists 60 excellent free
3D model Websites, which have free 3D models in various formats available for download.)
The import and export procedures are straightforward. Using a 3DS file as an example, to
import the 3DS object, we can issue the following sequence of “commands” (clicking menu
or entering file name) in the Blender IDE:

File > Import > 3D Studio (3ds) > Select 3DS file > Import 3DS

The imported object will appear in the Blender IDE.
To export a graphics object from the Blender IDE to a COLLADA file, we can issue the

following sequence of “commands”:

File > Export > COLLADA (.dae) > Enter File name > Export COLLADA

After obtaining the exported COLLADA file, we can parse it and incorporate it in our
OpenGL application.

In conclusion, the availability of open-source software packages has created unlimited
opportunities for every body. It brings democracy to the world, enriches our life, and makes
big positive impact to the planet. As long as one pays effort to acquire the knowledge of
the modern world, he or she will find that the world is abundant and beautiful.

36 Blender

Chapter 12 Normal Vectors and Polygon Mesh 37

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth. See http://www.forejune.com/

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

38 Blender

An Introduction to Digital Video Data
Compression in Java

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in java. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding. See

http://www.forejune.com/
January 2011

ISBN-10: 1456570870

ISBN-13: 978-1456570873

———————————————————————————————————–

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

	Chapter 12 Normal Vectors and Polygon Mesh
	12.1 3D Vectors
	12.2 Normal to a Surface
	12.2.1 Normal Vector
	12.2.2 Equation of a Plane

	12.3 Polygon Mesh Modeling
	12.4 COLLADA
	12.4.1 3D Graphics Formats
	12.4.2 COLLADA Features
	12.4.3 COLLADA Format
	12.4.3 Parsing COLLADA Files

	12.5 The libxml Library
	12.5.1 Introduction
	12.5.2 Reading and Parsing an XML File
	12.5.3 Parsing a File To a Tree
	12.5.4 Searching For a Node

	12.6 Blender

