
An Introduction to 3D Computer Graphics, Stereoscopic
Image, and Animation in OpenGL and C/C++

Fore June

Chapter 13 Curves and Surfaces

Curves and surfaces are important in graphics design. We can create an interesting graph-
ics object by simply revolving a simple curve around an axis. Skies and terrains, important
features of a video game, can be created using surfaces. Historically, ship builders used
mathematical models of surfaces to model ships. In the 1960s, automobile and aircraft in-
dustries began to apply curve and surface math models to design vehicles. Such techniques
are rapidly borrowed by other areas of computer graphics applications such as video games
and animated movies. We discuss in this chapter the application of some of these models
in computer graphics. The terminology of some terms used in this field is quite confusing.
Different authors may use different terms to refer to the same subject or they may define the
same thing in different ways. We simply follow the terminology that a majority of people
use in the Internet.

13.1 Representation of Curves and Surfaces

There are 3 common ways to represent curves and surfaces, namely, explicit, implicit and
parametric representations. Each representation has some advantages and disadvantages.
In computer graphics, the parametric representation is more commonnly used as it can
generate a curve or a surface by varying one or two parameters.

13.1.1 Explicit Representation

In the explicit representation, the coordinates of a point on a curve is represented as a
funtcion of the other coordinate. In general, if P = (x, y) is a point on a 2D curve, the y
coordinate is expressed as a function of the x coordinate:

2D Curve: y = f(x) (13.1)

Similarly, the y and z coordinates of a point P = (x, y, z) on a 3D curve is expressed as
functions of the x coordinate:

3D Curve: y = f(x)
z = g(x) (13.2)

For example, a 2D line and a 2D circle are given by:

2D line: y = mx+ b

2D circle segment: y =
√
r2 − x2 0 ≤ |x| < r

(13.3)

An explicit 3D surface is represented as a function of two variables:

3D Surface: z = f(x, y) (13.4)

For example, the upper hemisphere surface of a sphere centered at the origin is given by:

3D hemisphere surface: z =
√
r2 − x2 − y2 x2 + y2 ≤ r (13.5)

2

Chapter 13 Curves and Surfaces 3

In this representation, it is simple to compute the points and plot them and it is also
easy to check whether a point lies on the curve. However, the representation has a few
disadvantages. Firstly, it is not possible to get multiple values for a single x. In many
situations, we need to break curves like circles and ellipses into segments. For example, a
complete circle centered at the origin is composed of two segments:

y =
√
r2 − x2 y = −

√
r2 − x2 (13.6)

Secondly, the form has problem representing curves with infinite slope (i.e. vertical tan-
gent). In particular, if f(x) is a polynomial, it is impossible to represent such a curve
with infinite slope. Thirdly, it is not invariant under an affine transformation; its form may
be changed under such a transformation. A curve or a surface may not have an explicit
representation. This representation is rarely used in computer graphics.

13.1.2 Implicit Representation

In the implicit representation, the (x, y) coordinates of a point on a 2D curve satisfy an
equation of the form

2D Curve: F (x, y) = 0 (13.7)

For example, a 2D line and a 2D circle can be represented as:

2D line: ax+ by + c = 0
2D circle: x2 + y2 − r2 = 0 (13.8)

An implicit surface in 3D space has the form

3D Surface: F (x, y, z) = 0 (13.9)

For example, a plane and a spherical surface can be expressed as:

A plane: ax+ by + cz + d = 0
A spherical surface: x2 + y2 + z2 − r2 = 0 (13.10)

Actually, we can represent a curve as the intersection of two surfaces:

F (x, y, z) = 0
G(x, y, z) = 0 (13.11)

If we can solve a variable, say z of the implicit equation of (13.9) as a function of the
other two variables, then we obtain an explicit representation of the surface, z = f(x, y).
This is always possible at least locally when ∂F

∂z
6= 0.

Sometimes the function F is referred to as an inside-outside function because we can
easily determine whether a point is inside or outside the curve or the surface. In 3D space,
we have

1. F (x, y, z) = 0 for all (x, y, z) on the surface,
2. F (x, y, z) > 0 for all (x, y, z) outside the surface, and
3. F (x, y, z) < 0 for all (x, y, z) insdie the surface.

4 Parametric Representation

In implicit form, we can represent curves with infinite slope, as well as closed and multival-
ued curves such as a circle or an ellipse. On the other hand, when we join curve segments
together, it is difficult to determine whether their tangent directions agree at the joint points.
Like explicit representation, an implicit function is not invariant under an affine transfor-
mation. Also, some implicit curves are difficult to trace.

If the function F (x, y, z) of (13.9) is a polynomial of the x, y, z, then the function rep-
resents algebraic surfaces. Of particular importance are the quadratic surface or quadrics
where each term in F (x, y, z) can have degree up to 2 (e.g. x, xy, or z2 but not xy2):

ax2 + by2 + cz2 + dxy + eyz + hxz + kx+ ly +mz + n = 0 (13.12)

The web site at http://wims.unice.fr/gallery/ has an interesting gallery of animated algebraic
surfaces. Ellipsoid, elliptic cone and elliptic cylinder with special cases of sphere, circular
cone and circular cylinder respectively are examples of quadrics:

Ellipsoid: x2

a2 + y2

b2
+ z2

c2
− 1 = 0

Elliptic Cylinder: x2

a2 + y2

b2
− 1 = 0

Elliptic Cone: x2

a2 + y2

b2
− z2 = 0

(13.13)

Quadrics are useful in modeling objects. Some researchers claim that 85% of manufactured
objects can be modeled using quadrics. An implicit curve or surface in general is hard to
render as we have to solve a set of non-linear equations but an algebraic surface usually
can be rendered more efficiently than an arbitrary surface.

13.1.3 Parametric Representation

In this representation, we express each coordinate of a point on a curve in terms of an
independent variable, u, the parameter. A point in 3D space is expressed as

P (u) =

 x(u)
y(u)
z(u)

 u ∈ [u1, u2]. (13.14)

The form is the same for two and three dimensions. A useful interpretation of the para-
metric form is to visualize the locus of points P (u) being drawn as the parameter u varies.
Sometimes we may even interpret u as a time variable t. The spatial variables x(u), y(u),
and z(u) are usually polynomial or rational functions in u and u ∈ [u1, u2], where u1, and
u2 are real numbers.

For example, a 3D helix curve with radius a and rises 2πb units per turn can be described
by the parametric equations,

x(u) = a cos (u)
y(u) = a sin (u)
z(u) = bu

(13.15)

In this example, u ∈ [0, 2π]. Figure 13-1 below shows a helix curve.

Chapter 13 Curves and Surfaces 5

Figure 13-1 Parametric Helix Curve

To describe a 3D surface, we need two parameters, u and v. We express the coordinates
of a point P = (x, y, z) of a surface patch as a function of parameters u and v in a closed
rectangle:

x = x(u, v)
y = y(u, v)
z = z(u, v)

(13.16)

with u1 ≤ u ≤ u2, and v1 ≤ v ≤ v2. For example, we can express a torus with major
radius R and minor radius r parametrically as

x = cos(u)(R+ rcos(v))
y = sin(u)(R+ rcos(v))
z = rsin(v)

(13.17)

for u, v ∈ [0, 2π]. Figure 13-2 below shows a torus with R = 2 and r = 0.6; the diagram
on the right side of the figure shows the relations between parameters (u, v) and the (x, y, z)
coordinates.

Figure 13-2 Torus with R = 2, r = 0.6.

13.1.4 Geometric Continuity

The smoothness of a parametric curve relates to its continuity. We say that a parametric
curve f(u) has Ck continuity if its k-th derivative,

dkf(u)
duk

exists and is continuous throughout the curve. For example, a curve that describes the
trajectory of the motion of an object with a parameter of time, must have C1 continuity for
the object to have finite acceleration.

The continuity of the piecewise curve determines how the curve segments join at the
joints. We can describe the various order of parametric continuity as follows:

6 Geometric Continuity

• C−1: Curves consist of discontinuities. They may not be joined.
• C0: Curves are joined.
• C1: First derivatives are continuous.
• C2: First and second derivatives are continuous.
• Ck: First through k-th derivatives are continuous.

In real applications, we may have to join a number of small curves to form a long curve
to represent the profile of an object. The point where two curve segments meet within a
piecewise curve is referred to as a breakpoint. If the curve segments have the same k-
th derivative at the breakpoint, then the curve has Ck continuity. While computer graphics
has relied heavily on mathematical descriptions of point sets based on parametric functions,
we need a different notion, geometric continuity to describe the smoothness of curves and
surfaces.

We have learned that two Ck functions join smoothly at a boundary to form a joint Ck

function if, at all common points, their i-th derivatives agree for i = 0, 1, ..., k. However,
it is neither necessary nor sufficient to characterize the smoothness of curves or surfaces by
the continuities of the derivatives of the component functions. As an example, consider the
piecewise curve formed by three curve segments as shown in Figure 13-3 below:

O (0, 0)

A (−1,−1)

B (−1, 1) C (−1, 1)

Figure 13-3 Geometric Continuity

We can parameterize the curve segments OB and OC with two parabolic arcs with equal
derivatives at the point O:

PBO(u) = (1− u)2B + 2(1− u)uO + u2O u ∈ [0, 1]
POC(u) = (1− u)2O + 2(1− u)uO + u2C u ∈ [0, 1] (13.18)

We see that the curve is C1 continuous at the breakpoint O with PBO(1) = POC(0) = O

and dPBO(u)
du

∣∣∣
u=1

= dPOC(u)
du

∣∣∣
u=0

= O However, the two segments are not joining
smoothly at the joint point O, showing that matching derivatives do not always imply
smoothness. On the other hand, smoothness does not necessarily imply matching deriva-
tives. We can similarly parameterize AO and OC with two parabolic arcs with unequal
derivatives at the joint point O, even though the shape is geometrically continuous.

To study the smoothness of curves and surfaces, people define k-th order geometric
continuity, Gk, as agreement of derivatives after suitable reparametrization. The geometric
continuity can be considered as a relaxation of parametrization but not as a relaxation of
smoothness. For k ≤ 2, it has the following properties:

Chapter 13 Curves and Surfaces 7

• G0: Curves are joined. There may be a sharp turn at where they meet.
• G1: First derivatives are continuous. Two curve segments have identical tangents at

the breakpoint; they join smoothly.
• G2: First and second derivatives are continuous. Two curve segments have identical

curvature at the breakpoint. (Curvature is the rate of change of the tangents.)

In general, Gk continuity exists if we can reparameterize the curves to have Ck continuity.
A reparametrization of a curve only affects the parameters but the reparametrized curve is
geometrically identical to the original.

13.2 Interpolation

13.2.1 Polynomial Parametric Curves

In parametric representation, a popular approach is to represent a curve or a surface as a
polynomial of the parameters. A polynomial parametric curve of degree n (= order− 1 in
OpenGL), is of the form

p(u) =
n∑

k=0

ukck (13.19)

where each ck has independent x, y, z components. That is,

p(u) =

 x(u)
y(u)
z(u)

 , ck =

 ckx

cky

ckz

 (13.20)

A parametric polynomial surface is similarly defined by two parameters, u and v in the
form

p(u) =

 x(u, v)
y(u, v)
z(u, v)

 =
n∑

i=0

m∑
j=0

ciju
ivj (13.21)

In particular, the commonly used parametric cubic polynomial curves have the form

p(u) =
3∑

k=0

cku
k = c0 + c1u+ c2u

2 + c3u
3 (13.22)

We can express this in matrix form

p(u) =

 x(u)
y(u)
z(u)

 =

 c0x c1x c2x c3x

c0y c1y c2y c3y

c0z c1z c2z c3z

1
u
u2

u3

 (13.23a)

Or equivalently,

p(u) =
(
x(u) y(u) z(u)

)
=
(

1 u u2 u3
)

c0x c0y c0z

c1x c1y c1z

c2x c2y c2z

c3x c3y c3z

 (13.23b)

8 Interpolation Polynomial

13.2.2 Interpolation Polynomial

An interpolation polynomial is of the form

f(x) =
n∑

k=0

akx
k = anx

n + an−1x
n−1 + ...+ a1x1 + a0 (13.24)

If f(x) interpolates the data points (xi, yi), then

f(xi) = yi for all i ∈ 0, 1, ..., n

That is, the polynomial curve passes through the data points. We can find the coefficients ai

using a Vandermonde matrix, which is a matrix with the terms of a geometric progression
in each row.

Cubic parametric interpolating polynomial is a commonly used parametric curve that
interpolates four control points (n = 4). By adjusting the four control points, we obtain
different curves. Suppose the four control points are P0, P1, P2, and P3, where

Pk =
(
xk yk zk

)
(13.25)

In this case, the curve is described by

p(u) = c0 + c1u+ c2u
2 + c3u

3 0 ≤ u ≤ 1 (13.26)

To solve for (u), we have to find the coefficients ci so that the polynomial p(u) passes
through (interpolates) the four control points. An easy way to find p(u) is to specify the
four control points, P0, P1, P2, and P3 at u = 0, 1/3, 2/3, and 1 respectively. That is,

P0 = p(0) = c0
P1 = p(1

3) = c0 + c1(1
3) + c2(1

3)2 + c3(1
3)3

P2 = p(2
3) = c0 + c1(2

3) + c2(2
3)2 + c3(2

3)3

P3 = p(1) = c0 + c1 + c2 + c3

(13.27)

We can express this in matrix form:

P = AC (13.28)

where
P0

P1

P2

P3

 =

x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3

 (13.29)

A =

1 0 0 0

1 1
3 (1

3)2 (1
3)3

1 2
3 (2

3)2 (2
3)3

1 1 1 1

 C =

c0
c1
c2
c3

 =

c0x c0y c0z

c1x c1y c1z

c2x c2y c2z

c3x c3y c3z

 (13.31)

Chapter 13 Curves and Surfaces 9

The inverse of matrix A can be calculated and is

A−1 =

1 0 0 0
−5.5 9 −4.5 1

9 −22.5 18 −4.5
−4.5 13.5 −13.5 4.5

 (13.32)

As P in (13.28) consists of control points which are known, we can solve for the coeffi-
cients C by

C = A−1P (13.33)

The curve p(u) of (13.26) can be expressed as

p(u) = UC (13.34)

where
U =

(
1 u u2 u3

)
(13.35)

Example

Find the cubic polynomial curve p(u), u ∈ [0, 1] that interpolates the points (0, 0, 0), (1, 2, 2), (2, 3, 4), (4, 5, 3).
What is p(0.8) ?

Solutions:
We let the curve p(u) pass through the points at u = 0, 1/3, 2/3, 1. Then

C = A−1P =

0BB@
1 0 0 0
−5.5 9 −4.5 1

9 −22.5 18 −4.5
−4.5 13.5 −13.5 4.5

1CCA
0BB@

0 0 0
1 2 2
2 3 4
4 5 3

1CCA =

0BB@
0 0 0
4 9.5 3
−4.5 −13.5 13.5
4.5 9 −13.5

1CCA
Thus

p(u) = UC =
`

1 u u2 u3
´0BB@

0 0 0
4 9.5 3
−4.5 −13.5 13.5
4.5 9 −13.5

1CCA (13.36)

When u = 0.8, we have

p(0.8) =
`

1 0.8 0.64 0.512
´0BB@

0 0 0
4 9.5 3
−4.5 −13.5 13.5
4.5 9 −13.5

1CCA
=
`

2.624 3.568 4.128
´

The cubic polynomial curve of this example is shown in Figure 13-4 below.

Figure 13-4 Cubic Polynomial Interpolation

10 Lagrange’s Method

13.2.3 Lagrange’s Method

Langrange interpolation is a simplest form of numerical solution for polynomial interpo-
lation. Though it is simple, the method is susceptible to Runge’s phenomenon, which is
a problem of oscillation at the edges of an interval caused by polynomial interpolation
with high degree polynomials. Also, when an interpolation point is changed, the method
requires recalculating the entire interpolant.

The Lagrange interpolating polynomial is the polynomial y(x) of degree ≤ (n − 1)
passing through the set of n points {(x1, y1), (x2, y2), ..., (xn, yn)} with y(xi) = yi, and
no two xi are the same. It is given by

y(x) =
n∑

i=1

yi

n∏
j 6=i

(x− xj)

n∏
j 6=i

(xi − xj)

(13.37)

The following function polyint() shows an implementation of this method. The class
Point3, which has been discussed in Chapter 12, is a class that defines a 3D point.

—————————————————————————————————————

//Langrange polynomial interpretation for N points
double polyint (Point3 points[], double x, int N)
{
double y;

double num = 1.0; //numerator
double den = 1.0; //denominator
double sum = 0.0;

for (int i = 0; i < N; ++i) {
num = den = 1.0;
for (int j = 0; j < N; ++j) {
if (j == i) continue;
num = num * (x - points[j].x); //x - xj

}
for (int j = 0; j < N; ++j) {
if (j == i) continue;
den = den * (points[i].x - points[j].x); //xi - xj

}
sum += num / den * points[i].y;

}
y = sum;

return y;
}

—————————————————————————————————————

Chapter 13 Curves and Surfaces 11

13.2.4 Neville’s Algorithm and Barycentric Formula

The Lagrange interpolation is simple and its implementation is straightforward but it is
quite inefficient when the degree of the polynomial becomes large as it involves O(n2)
multiplications. Neville’s algorithm improves Lagrange method by calculating values re-
cursively, which can be easily extended to calculate derivative values. The Barycentric
formula extends the idea further, which only requires O(n) multiplications in the evalua-
tion of y(x). In this method, we let

l(x) = (x− x0)(x− x1) · · · ·(x− xn)
wi = 1

n∏
j 6=i

(xi − xj)
, i = 0, · · ·, n

li(x) = l(x) wi
(x− xi)

(13.38)

where wi are referred to as barycentric weights. Then equation (13.37) can be rewritten as

y(x) =
n∑

i=0

liyi = l(x)
n∑

i=0

wi

(x− xi)
yi (13.39)

The formula requires O(n2) operations for calculating some quantities and the numbers
wi, but once the quantities are obtained, it only requires O(n) operations to evaluate y(x).
The following code segment shows an implementation of this method.

—————————————————————————————————————

const int N = ..;
double w[N];

void calculate_weights(Point3 points[])
{
for (int i = 0; i < N; i++) {

w[i] = 1.0;
for (int j = 0; j < N; j++) {

if (j == i) continue;
w[i] /= points[i].x - points[j].x;

}
}

}

//Barycentric polynomial interpretation for N points
double barycentric (Point3 points[], double x)
{
double sum = 0.0, lx = 1.0, y;

for (int i = 0; i < N; i++) {
if (x == points[i].x)
return points[i].y;

lx *= x - points[i].x;
}

12 Bezier Curve

for (int i = 0; i < N; i++)
sum += w[i] * points[i].y / (x - points[i].x);

y = lx * sum;
return y;

}

—————————————————————————————————————

Another simple method of interpolation based on polynomials is the Hermite interpola-
tion which extends the basic polynomial interpolation to consider both the data points and
the derivatives (slopes) at the the data points. Hermite interpolation is simple and efficient
but it may not be very effective as sometimes a small change of the interpolating curve
requires a large variation of the magnitude of the tangent vector.

In a curve interpolation, we generate a curve that passes through all of the control points.
Under the constraint of restricting the curve to pass through a set of data points, we have too
little local control of the curve. In many applications, we do not require the curve passing
through all of the control points. All we need is that the curve passes through the first and
the last control points; other points are used to shape the curve. This gives us a lot more
control in shaping the curve by varying the control points. We can imagine that the shape
of such as curve is obtained by fixing the two ends of an elastic magnetic string on a table.
We then fix some small magnets at various positions of the table. The magnets attract the
elastic string towards them and thus generate a curved shape. The magnets act like control
points in a curve design algorithm. A curve generated by a set of control points but does
not necessarily pass through all of them is called an approximating curve. In the following
sections, we discuss some common algorithms used by designers to produce such a curve.

13.3 Bezier Curves and Surfaces

13.3.1 Bezier Curve

A commonly used family of approximating curves is the spline curves or splines for short.
A spline curve is a smooth curve specified succinctly by a few control points. This term
originates from traditional drafting design, where a spline is a thin strip, which is held in
place by weights to create a curve for tracing. In a similar way we generate a curve using a
set of control points.

Bezier curves and B-spline curves are two main classes of splines. Bezier curve is
named after the French Pierre Bezier, who developed the method for the body design of the
Renault car in the 1970s. Given a set of of n+1 points P0, P1, ..., Pn, the Bezier parametric
curve is of the form

p(u) =
n∑

k=0

PkBk,n(u) u ∈ [0, 1] (13.40)

where Bk,n(u) is a Bernstein polynomial given by

Bk,n(u) =
n!

k!(n− k)!
uk(1− u)n−k u ∈ [0, 1] (13.41)

Chapter 13 Curves and Surfaces 13

Note that

n∑
k=0

Bk,n(u) =
n∑

k=0

(
n

k

)
uk(1− u)n−k = (u+ (1− u))n = 1n = 1 (13.42)

Thus Equation (13.40) is an affine combination of points and gives a valid point. The
curve always passes through the first control point (p(0) = P0) and the last control point
(p(1) = Pn). Because Bk,n(u) ≥ 0 for u ∈ [0, 1], the curve always lies within the convex
hull of the control points. Also, the curve is tangent to P1 − P0 and Pn − Pn−1 at the end
points.

In general, Bk,n is called a blending function as it ‘blends’ the control points to form
the Bezier curve; its degree is always one less than the number of control points. We can
generate closed curves by making the last control point Pn the same as the first one P0.

A rational Bezier curve adds adjustable weights to provide better approximation to ar-
bitrary shapes; it is defined by

p(u) =

n∑
k=0

Bk,m(u)wkPk

n∑
k=0

Bk,m(u)wk

u ∈ [0, 1] (13.43)

where Bk,m is a Bernstein polynomial with degree m, Pk are the control points, and the
weight wk of Pk is the last ordinate (w) of the homogeneous point Pw

k .

13.3.2 Cubic Bezier Curve

The most commonly used Bezier curves are the degree three Bezier Curves, also known
as cubic Bezier curves, which are defined by four control points.Two of these are the end
points of the curve, while the other two effectively define the gradients at the end points,
pulling the curve towards them.

From equations (13.40) and (13.41), a degree 3 (four control points) Bezier curve is
given by

p(u) = B0(u)P0 +B1(u)P1 +B2(u)P2 +B3(u)P3 u ∈ [0, 1] (13.44)

where

Bk(u) = Bk,3(u) =
(

3
k

)
uk(1− u)3−k =

3!
k!(3− k)!

uk(1− u)3−k (13.45)

are the blending functions for the curve. In explicit form,

B0 = (1− u)3 B1 = 3u(1− u)2

B2 = 3u2(1− u) B3 = u3 (13.46)

The figure below presents some examples of degree three Bezier curves, showing how the
control points shape the curves.

14 Cubic Bezier Curve

Figure 13-5 Cubic Bezier Curves (Degree 3)

Figure 13-6 below shows a plot of the blending functions for u ∈ [0, 1]; at any value of u,
B0 +B1 +B2 +B3 = 1.

Figure 13-6 Blending Functions for Bezier Curves of Degree 3

If we expand (13.46) and substitute the expanded terms into (13.44), we can express

Chapter 13 Curves and Surfaces 15

p(u) explicitly as

p(u) = (1− 3u+ 3u2−u3)P0 + (3u− 6u2 + 3u3)P1 + (3u2− 3u3)P2 +u3P3 (13.47)

or in matrix form

p(u) =
(

1 u u2 u3
)

1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1

P0

P1

P2

P3

 (13.48)

The derivative of p(u) is given by

p′(u) =
dp(u)
du

=
(

0 1 2u 3u2
)

1 0 0 0
−3 3 0 0

3 −6 3 0
−1 3 −3 1

P0

P1

P2

P3

 (13.49)

Therefore,
p′(0) = 3(P1 − P0) p′(1) = 3(P3 − P2) (13.50)

This means that the curve p(u) starts at u = 0, traveling in the direction of the vector from
P0 to P1 and at the end, it travels in the direction of P2 to P3.

The following code segment shows an implementation of cubic Bezier curves.
—————————————————————————————————————

//blending functions with degree 3; 0 <= k <=3, 0 <= u <= 1
float blend3 (float u, int k)
{

float b = 1;
switch (k) {
case 0:

for (int i = 0; i < 3; i++)
b *= (1 - u);

break;
case 1:

b = 3 * u * (1 - u) * (1 - u);
break;

case 2:
b = 3 * u * u * (1 - u);
break;

case 3:
b = u * u * u;
break;

}
return b;

}

//blending functions with degree n (n+1 control points), 0 <= u <= 1
float blend (float u, int n, int k)
{

float b = 1;
if (n <= 0 || n < k)

16 Cubic Bezier Curve

return b;

int j = n - k;
float u1 = 1 - u;
for (int i = 1; i <=n; i++) {
b *= i;
if (k >= 1) {

b *= u / k;
k--;

}
if (j >= 1) {

b *= u1 / j;
j--;

}
}

return b;
}

//render the curve
void display(void)
{

float x, y, z;
int i, j, k;

Point3 data[4], *p[4];
float B[4], u;
.............. //data[] contains four control points
glBegin(GL_LINE_STRIP);

for (i = 0; i <= 80; i++) {
u = (float) i / 80.0;
for (k = 0; k < 4; k++) {

//B[k] = blend3 (u, k);
B[k] = blend (u, 3, k); //degree 3 blending functions
p[k] = (Point3 *) &data[k];

}
x = y = z = 0;
for (k = 0; k < 4; k++){

x += B[k] * p[k]->x;
y += B[k] * p[k]->y;
z += B[k] * p[k]->z;

}
glVertex3f (x, y, z);

}
glEnd();
glFlush();

}

—————————————————————————————————————
Although a cubic Bezier curve is simple and easy to compute, it is not possible to use

it to closely approximate a curve that has many turns as a cubic Bezier curve only uses
four control points. A common practice is to break a long curve into a number of segments,

Chapter 13 Curves and Surfaces 17

each defined by a separate cubic Bezier curve and joined to another one to form a piecewise
curve. Figure 13-7 shows an example of joining multiple cubic curves to approximate a
curve fit to an arbitrary number of data points.

Figure 13-7 Joining Cubic Bezier Curves to Form Piecewise Curve

13.3.3 Bezier Surface

By blending functions of two orthogonal Bezier curves, we can form a Bezier surface,
which can be also defined as a parametric surface. We can specify an order (n+ 1)(m+ 1)
Bezier surface using two parameters, u and v with (n+ 1)(m+ 1) control points Pij :

p(u, v) =
n∑

i=0

m∑
j=0

Bi,n(u)Bj,m(v)Pij u, v ∈ [0, 1] (13.51)

where Bk,n are the Bernstein polynomials given by (13.41).
The corresponding properties of Bezier curve apply to Bezier surface. For example, the

surface is contained within the convex hull of the control points, and in general does not
pass through all the control points except for the corners of the control point grid. We can
form closed surfaces by setting the last control point to be the same point as the first. If the
tangents of the first two control points are also equal to that of the last two control points
then the closed surface will have first order continuity.

Using Bezier surfaces to construct patch meshes is better than constructing meshes using
polygons such as triangles because Bezier surfaces are easier to manipulate and are much
more compact. Moreover, they have more superior continuity properties. Some common
parametric surfaces such as spheres and cylinders can be well approximated by relatively
small numbers of cubic (n = m = 3) Bezier patches.

However, Bezier patch meshes are difficult to render directly because it is difficult to
calculate their intersections with lines. It is also difficult to combine them directly with

18 B-Spline Properties

perspective projection algorithms. Therefore, Bezier patch meshes are in general decom-
posed into meshes of flat triangles in the 3D graphics processing pipeline.

13.4 B-Splines

13.4.1 B-Spline Properties

In many computer applications such as computer aided design (CAD), we may need to
construct curves which are long and have complicated shapes. One approach would be
to use high-degree Bezier curves. However, a high-degree Bezier curve is expensive to
compute and does not have good local control; each of the n+ 1 control points of a degree
n Bezier curve affects the whole curve. When we change the position of one control point,
the whole curve will be changed. Another approach is to construct the long curve by
joining piecewise cubic Bezier curves with some constraints at the joints. In most cases,
the constraint is that the curves are joined smoothly, which in turn requires at least C1-
continuity but desirably C2-continuity. Piecewise Bezier curves interpolate the control
points at the joints (which are end points for the segments) and have local control, but
they need not be C2-continuous. It turns out that piecewise cubic Bezier curves cannot
be C2-continuous and have local control at the same time. This is because C2-continuous
property implies second derivatives at the joined points are continuous; this requires that
the two “interior” control points pk

1 , and pk
2 of segment k depend on pk

3(= pk+1
0), which

in turn depend on the “interior” control points of the next segment, i.e. there is no local
control.

A B-spline, which can be considered as a generalization of the Bezier curve, addresses
these problems by using a different approach to represent a complicated curve. A B-spline
curve maintains local control but does not interpolate the “interior” control points. We can
define a B-spline curve in the following way.

We first define a knot vector U (not a geometric 3D vector) as a nondecreasing se-
quence,

U = {u0, u1, ..., uT } (13.52)

and define n control points p0, p1, ..., pn−1. We define the order as

m = T − n+ 1 m ≥ 1 (13.53)

Degree d is defined as order minus one (i.e. d = m − 1 = T − n). Because m ≥ 1, we
have T ≥ n. Also, T = n + m − 1. We call the entities um, ..., uT internal knots, and
define the basis functions Nk,i recursively as

Nk,1(u) =
{

1 if uk < u ≤ uk+1

0 otherwise (13.54)

Nk,m(u) =
(

u− uk

uk+m−1 − uk

)
Nk,m−1(u) +

(
uk+m − u

uk+m − uk+1

)
Nk+1,m−1(u) (13.55)

A Non-Uniform Rational B-spline (NURB) is defined by the curve

p(u) =
n−1∑
k=0

pkNk,m(u) (13.56)

Chapter 13 Curves and Surfaces 19

Note again that the basis functions sum up to 1 at any u and thus it is legitimate to use them
to form a combination of points.

In (13.56), if the first m knots are 0 and the last m knots are equal to 1, then it defines a
nonperiodic B-spline . If the internal knots are equally spaced, it is a uniform B-spline . If
the B-spline has no internal nodes, it is reduced to a Bezier curve.

B-splines have a number of advantages in graphics design. The following list some of
them:

1. A single B-spline can specify a long complicated curve.
2. B-splines can approximate curves with sharp bends and even “corners”.
3. We can translate piecewise Bezier curves into B-splines.
4. B-splines act more flexibly and intuitively with a large number of control points.
5. We can have local control of B-splines. That is, changing the placement of a point

only affects a small segment of the curve.
6. Compared to Bezier curves, B-splines are a lot more sensitive to the placement of

control points.
7. A piecewise Bezier curve requires more control points than a corresponding B-spline

curve.

13.4.2 Knot Vector and Basis Functions

As discussed above, an order m (degree m − 1) B-spline curve with n control points is
a continuous function defined by (13.56). In defining the curve, we must specify a knot
vector U = {u0, u1, ..., un+m−1}. Each basis function Nk,j(u) depends only on the j + 1
knot values from uk to uk+j . Nk,j(u) = 0 for u ≤ uk or u > uk+j . So pk only influences
the curve segment for uk < u ≤ uk+j . Actually, p(u) is a polynomial of order j (degree
j − 1) on each interval uk < u ≤ uk+1. Across the knots p(u) is Cj−2-continuous and
p(u) is defined for umin < u ≤ umax where umin = uj and umax = un+2.

Knot vectors are generally classified into three categories: uniform, open uniform, and
non-uniform.

If the knots uk are equally spaced, the knot vector is a uniform knot vector. For example,

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
{−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0}

are uniform knot vectors.
Open Uniform knot vectors are uniform knot vectors which have j-equal knot values at

each end. That is, knot values are equally spaced but the end values are repeated j times:

uk = u0, 0 ≤ k < j
uk+1 − uk = constant, j − 1 ≤ k < n+ 1
uk = uj+n, k ≥ n+ 1,

(13.57)

Examples:

{0, 0, 0, 1, 2, 3, 4, 4, 4} k = 3, n = 5
{1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6} k = 4, n = 7
{0.1, 0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7} k = 5, n = 7

20 Cubic Uniform B-Splines

Non-uniform knot vectors are general cases, where the only constraint is the standard
uk ≤ uk+1.

The shape of an Nk,j basis function is determined entirely by the relative spacing be-
tween the knots. Scaling (u′k = αuk,∀k) or translating (u′k = uk + ∆u,∀k) the knot
vector has no effect on the shape of the basis function Nk,j .

13.4.3 Cubic Uniform B-Splines

From discussions above, we see that when the knots are equidistant, the basis functions are
just shifted copies of each other and we say that the B-spline is uniform. If the number of
knots is the same as the degree, the B-spline degenerates into a Bezier curve.

Uniform B-splines of degree three, also known as cubic uniform B-splines, are one of
the simplest and most useful classes of B-splines. A cubic B-Spline with n + 1 control
points with open uniform knots is given by:

p(u) =
n∑

k=0

pkNk(u) 3 ≤ u ≤ n+ 1 (13.58)

where pk’s are the control points, and Nk(u) = Nk,4(u) are the blending (or basis) func-
tions of degree 3 (order 4). For degree 3, Nk(u) = 0 if u ≤ k or u ≥ k + 4. (i.e. For
any given u value, only 4 basis functions are nonzero; see Figure 13.9 below.) Therefore,
(13.58) can be expressed as

p(u) =
j∑

k=j−3

pkNk(u) u ∈ [j, j + 1], 3 ≤ j ≤ n (13.59)

This equation implies that when a single control point pk is moved, only the portion of the
curve p(u) with k < u < k+ 4 will be changed. In other words, we can have local control
for such a curve. Another way of understanding (13.59) is that the curve p(u) is composed
of a number of curve segments and each segment is controlled by four control points. In
general, the blending functions have the following properties:

1. They are translates of each other, i.e. Nk(u) = N0(u− k).
2. They are piecewise degree three polynomials.
3. They are C2-continuous, i.e. Nk(u)’s have continuous second derivatives.
4. They are partitions of unity, i.e.

∑
Nk(u) = 1, for 3 ≤ u ≤ n+ 1. This is necessary

as p(u) is a valid point.
5. Nk ≥ 0, (thus Nk ≤ 1) for all u.
6. They have local properties, i.e. Nk = 0 for u ≤ k and k + 4 ≤ u.

Figure 13-8 shows how these basis functions are calculated recursively.

Chapter 13 Curves and Surfaces 21

Nk−3,4 Nk−2,4

Nk−2,3

Nk−1,4

Nk−1,3

Nk−1,2

Nk,4

Nk,3

Nk,2

Nk,1

Figure 13-8 Degree 3 Blending Functions (Nk,1 = 1, Ni = Ni,4)

Figure 13-9 shows a plot of the first five cubic blending functions with uniform knots.
The knot vector is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. (If open-uniform knots are used, Nk(u) =
0 when u ≤ 3.) We can see that the functions are translates of each other (Nk(u) =
N0(u+ k)) and Nk(u) is nonzero only when k < u < k + 4.

Figure 13-9 Cubic Blending Functions (
j+3∑
i=j

Ni(u) = 1)

13.4.4 Non Uniform Rational B-Splines (NURB)

The non uniform rational B-Spline (NURB) is the most general form of a B-Spline. An
order m (or degree m − 1) NURB with n control points is given by (13.56). A uniform
B-spline is simply a special form of NURB.

We denote the knot vector used in calculating the curve values of a NURB as U =
{u0, u1, ..., un+m−1}. The knot vector divides the parametric space into intervals, which
are usually referred to as knot spans. The number of knots in a knot vector is always equal
to the number of control points plus the B-Spline order. The values in the knot vector
should be in nondecreasing order. Each time the value of the parameter u gets to a new
knot span, a new control point will be used and an old control point will be dropped in
calculating the current p(u). The steps below show a standard simple way of setting a knot
vector of an order m NURB with n control points:

1. The knot vector U has totally n+m knots, denoted as U = {u0, ..., un+m−1}.
2. The values of the first m knots, u0, ..., um−1 are all equal to 0.
3. The next n−m knots um, ..., un−1 increments in 1, from 1 to n−m.

22 Non Uniform Rational B-Splines (NURB)

4. The final m knots, un, ..., un+m−1 are all equal to n−m+ 1.

Examples

1. Knot vector of 8 control points (n = 8), order 4(m = 4):
u0 = u1 = u2 = u3 = 0
u4 = 1, u5 = 2, u6 = 3, u7 = 4
u8 = u9 = u10 = u11 = 5

2. Knot vector of 7 control points (n = 8), order 5(m = 5):
u0 = u1 = u2 = u3 = u4 = 0
u5 = 1, u6 = 2
u7 = u8 = u9 = u10 = u11 = 3

The following code segment shows the function setKnotVector that builds a knot vector
using this method, the function N k that calculates the blending functions, and the function
nurb that finds a point using NURB.

//order m; n control points; return knots in U[]
void setKnotVector (int m, int n, float U[])
{

if (n < m) return; //not enough control points
for (int i = 0; i < n + m; ++i){

if (i < m) U[i] = 0.0;
else if (i < n) U[i] = i-m+1; //i is at least m here
else U[i] = n - m + 1;

}
}

//order m blending functions recurvsively, U[] holds knots
float N_k (int k, int m, float u, float U[])
{
float d1, d2, sum = 0.0;

if (m == 1)
return (U[k] < u && u <= U[k+1]); //1 or 0

//m larger than 1, so evaluate recursively
d1 = U[k+m-1] - U[k];
if (d1 != 0)

sum = (u - U[k]) * N_k(k,m-1,u, U) / d1;
d2 = U[k+m] - U[k+1];
if (d2 != 0)
sum += (U[k+m] - u) * N_k(k+1, m-1, u, U) / d2;

return sum;
}

//non uniform rational B-splines, n control points, order m;
// p is the output point
void nurb (int n, int m, const Point3 control_points[],

float u, float U[], Point3 &p)
{

Chapter 13 Curves and Surfaces 23

//sum control points,multiplied by respective basis functions
Point3 p3; //x, y, z components set to zero in constructor
for (int k = 0; k < n; ++k){

float Nk = N_k(k, m, u, U); //blending (basis) function
p3.x += Nk * control_points[k].x;
p3.y += Nk * control_points[k].y;
p3.z += Nk * control_points[k].z;

}
p = p3; //= is a copy command in C++

}

Figure 13-10 below shows a curve obtained using the nurb function shown above; 8 control
points and order 4 are used in the calculations.

Figure 13-10 Curve Evaluated Using NURB with Order 4 and 8 Control Points

NURBS are just B-Splines with extensions made to accommodate points specified in
homogeneous coordinates. They are invariant under the projective transformation. This
means that if we draw two objects that are connected, they will be still connected when
drawn in perspective. NURBS can also model conic sections precisely.

13.5 OpenGL Evaluators and NURBS

OpenGL provides functions to generate both Bezier (GL) and B-Spline (GLU) curves
and surfaces. We can use the functions to interpolate vertices, normals, colors and textures.

13.5.1 OpenGL Evaluators for Bezier Curves and Surfaces

OpenGL supports the drawing of curves and surfaces through the use of evaluators. We
use glMap1*, which defines a one-dimensional evaluator to construct Bezier curves. This
is done in the following steps, using glMap1f as example:

1. Specify the parameters with

void glMap1f(GL_MAP1_VERTEX_3,
float uMin, float uMax,
int stride, int nPoints,
const float *points);

24 OpenGL Evaluators for Bezier Curves and Surfaces

This assumes 3 coordinates per vertex, and stride is used if we have interleaved
different kinds of data in the array points.

2. Activate Bezier curve display by

glEnable(GL MAP1 VERTEX 3);

3. Display the curve by putting

glEvalCoord1f(float uValue);

in a loop insdie glBegin/glEnd.

For uniform spacing of u values, we can also use

glMapGrid1f(int nPartitions, float u1, float u2);

to specify the number and range of u values, where nPartitions is the number of partitions
in the grid range interval [u1, u2], u1 is a value used as the mapping for integer grid domain
value i = 0, and u2 is a value used as the mapping for integer grid domain value i =
uPartitions. The curve is actually drawn with

glEvalMesh1f(enum mode, int n1, int n2);

where mode can be GL LINE or GL POINT and n1 and n2 specify the part of the curve
that should be drawn.

Besides GL MAP1 VERTEX 3, the commands glMap1*() support other types of con-
trol points as listed in Table 13-1 below.

Table 13-1 Control Point Types for glMap1*()
Parameter Data Types

GL MAP1 VERTEX 3 vertex coordinates (x, y, z)
GL MAP1 VERTEX 4 vertex coordinates (x, y, z, w)
GL MAP1 INDEX color index
GL MAP1 COLOR 4 color components (R, G, B, A)
GL MAP1 NORMAL normal coordinates (x, y, z)
GL MAP1 TEXTURE COORD 1 texture coordinates s
GL MAP1 TEXTURE COORD 2 texture coordinates (s, t)
GL MAP1 TEXTURE COORD 3 texture coordinates (s, t, r)
GL MAP1 TEXTURE COORD 4 texture coordinates (s, t, r, q)

The following code segment shows an example of using the evaluator with 5 control
points and the constructed Bezier curve is shown in Figure 13-11 below.

float controlPoints[Order][3] = {
{ -4.0, -1.0, 0.0}, { -2.0, 1.0, 0.0},
{ -3.0, -0.5, 0.0},
{2.0, -1.0, 0.0}, {4.0, 1.0, 0.0}};

void init(void)
{

glClearColor(1.0, 1.0, 1.0, 0.0);
glShadeModel(GL_FLAT);

/*
* GL_MAP1_VERTEX_3 -- specifies that 3-dimensional control points

* are provided and 3-D vertices should be produced

* 0.0 -- low value of parmeter u

Chapter 13 Curves and Surfaces 25

* 1.0 -- high value of parmeter u

* 3 -- number of floating-point values to advance in the data

* between two consecutive control points

* 5 -- order of the spline (=degree+1) = number of control points

*/
glMap1f(GL_MAP1_VERTEX_3,0.0,1.0, 3, Order, &controlPoints[0][0]);
glEnable(GL_MAP1_VERTEX_3);

}

void display(void)
{

int i;

glClear(GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 0.0, 0.0);
glBegin(GL_LINE_STRIP);

for (i = 0; i <= 30; i++)
glEvalCoord1f((float) i/30.0);

glEnd();
// The following code displays the control points as dots.
glPointSize(6.0);
glColor3f(1.0, 0.0, 0.0);
glEnable (GL_POINT_SMOOTH);
glBegin(GL_POINTS);

for (i = 0; i < Order; i++)
glVertex3fv(&controlPoints[i][0]);

glEnd();
glFlush();

}

In the example, we use the command glMap1f() to define a one-dimensional evaluator that
uses Equation (13.40) for Bezier curves to evaluate points. The output of the code is shown
in Figure 13-11 below.

Figure 13-11 Curve Defined by glMap1f() in Above Code Segment

We can similarly construct two-dimensional Bezier surfaces or patches described by
Equation (13.51); we summarize the procedures as follows, using glMap2f() as example:

1. Define the evaluator with

void glMap2f(GL_MAP2_VERTEX_3,
float u1, float u2,
int ustride, int uorder,
float v1, float v2,
int vstride, int vorder,
const float *points);

2. Enable the evaluator by

26 OpenGL Evaluators for Bezier Curves and Surfaces

glEnable(GL MAP2 VERTEX 3);

3. Display the curve by putting

glEvalCoord2f(float uValue, float vValue);

in a loop insdie glBegin/glEnd. If we do not want to use loop, we can setup and
evaluate a mesh with glMapGrid2f() and glEvalMesh2f().

The following code segment presents an example of using OpenGL commands to con-
struct a Bezier surface. The output of it is shown in Figure 13-12 below.

const int uOrder = 4;
const int vOrder = 4;
float controlPoints[uOrder][vOrder][3] = {

{{-2, -1, 4.0}, {-1, -1, 3.0},
{0, -1, -1.5}, {2, -1, 2.5}},
{{-2, -0.5, 1.0}, {-1, -0.5, 3.0},
{0, -0.5, 0.0}, {2, -0.5, -1.0}},
{{-2, 0.5, 4.0}, {-1, 0.5, 1.0},
{0, 0.5, 2.0}, {2, 0.5, 4.0}},
{{-2, 1.5, -2.0}, {-1, 1.5, -2.0},
{0, 1.5, 0.0}, {2, 1.5, -1.0}}

};

void init(void)
{

glClearColor(1.0, 1.0, 1.0, 0.0);
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, uOrder,

0, 1, 12, vOrder, &controlPoints[0][0][0]);
glEnable(GL_MAP2_VERTEX_3);
glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
glEnable(GL_DEPTH_TEST);

}

void display(void)
{

int i, j;
float u, v;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glColor3f(0.0, 0.0, 0.0);
gluLookAt (10, 10, 10, 0, 0.0, 0.0, 0.0, 1.0, 0.0);
glEnable (GL_LINE_SMOOTH);
glLineWidth(2);

const int n1 = 8, n2 = 30;
for (i = 0; i <= n1; i++) {

v = (float) i / n1;
glBegin(GL_LINE_STRIP);
for (j = 0; j <= n2; j++){

u = (float) j / n2;
glEvalCoord2f(u, v);

}
glEnd();

}
for (i = 0; i <= n1; i++) {

u = (float) i / n1;
glBegin(GL_LINE_STRIP);
for (j = 0; j <= n2; j++) {

v = (float) j / n2;

Chapter 13 Curves and Surfaces 27

glEvalCoord2f(u, v);
}
glEnd();

}

glFlush();
}

Figure 13-12 Bezier Surface Constructed using Evaluators

13.5.2 The GLU NURBS

Another way to draw Bezier curves and B-Splines is to use the NURBS interface. Inter-
nally, the NURBS interface is built on top of the evaluators discussed above. From the
programmers point of view, the NURBS are simpler to use. It is also relatively easy to
incorporate lighting effects and texture mapping in NURBS curves or surfaces. The fol-
lowing steps summarize the procedures to use NURBS:

1. We need to pass a NURBS context object into the NURBS interface each time we
use the interface. Therefore, the first thing to do is to create a NURBS context object
by

GLUnurbs *nurbs = gluNewNurbsRenderer();

This creates a pointer to a NURBS object, and we refer to this pointer when creating
a NURBS curve or surface. A value of 0 is returned if there is not enough memory
to allocate the object.

2. If we need to use lighting with a NURBS surface, we can enable the automatic
normal-calculation feature by

glEnable(GL AUTO NORMAL);

3. We may call gluNurbsProperty() to choose rendering values. The function has
prototype,

void gluNurbsProperty(GLUnurbs *nurbs, GLenum property, GLfloat value);

28 The GLU NURBS

where

property specifies the property to be set, which can be
GLU SAMPLING TOLERANCE, GLU DISPLAY MODE, GLU CULLING,
GLU AUTO LOAD MATRIX, GLU PARAMETRIC TOLERANCE,
GLU SAMPLING METHOD, GLU U STEP, GLU V STEP, or GLU NURBS MODE.

value specifies the value of the indicated property, which may be a numeric
value or one of
GLU OUTLINE POLYGON, GLU FILL, GLU OUTLINE PATCH, GLU TRUE,
GLU FALSE, GLU PATH LENGTH, GLU PARAMETRIC ERROR,
GLU DOMAIN DISTANCE, GLU NURBS RENDERER, or
GLU NURBS TESSELLATOR.

4. If we need notification when encountering an error, we can call

void gluNurbsCallback (GLUnurbs *nurb, GLenum which ,
GLfuncptr CallBackFunc);

5. Start rendering our curve or surface by calling

gluBeginCurve(nurbs) or gluBeginSurface(nurbs)

6. Generate and render our curve or surface by calling

gluNurbsCurve() or gluNurbsSurface()

at least once with the control points, knot sequence, and order of the blending func-
tions for the NURBS object. We might further call these functions to specify surface
normals and/or texture coordinates.

7. Finish rendering the curve or surface by calling

gluEndCurve(nurbs) or gluEndSurface(nurbs).

The following code segment presents an example of constructing a NURBS surface with
lighting. Same control points of the evaluator example above have been used. The output
of it is shown in Figure 13-13 below.

GLUnurbsObj *nurbs;
void nurbsError(GLenum error)
{

const GLubyte *s = gluErrorString (error);
printf ("Nurbs Error: %s\n", s); exit (0);

}

void init(void)
{ glClearColor(1.0, 1.0, 1.0, 0.0);

GLfloat mat_ambient[] = { 0.5, 0.4, 0.3, 1.0 };
GLfloat mat_diffuse[] = { 0.7, 0.8, 0.9, 1.0 };
GLfloat mat_specular[] = { 0.9, 0.8, 0.7, 1.0 };
GLfloat mat_shininess[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);

Chapter 13 Curves and Surfaces 29

GLfloat light[] = { 1, 1, 1 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_DIFFUSE, light);
glLightfv(GL_LIGHT0, GL_AMBIENT, light);
glLightfv(GL_LIGHT0, GL_SPECULAR, light);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glEnable(GL_LIGHTING); glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
glEnable(GL_AUTO_NORMAL);
glEnable(GL_NORMALIZE);

nurbs = gluNewNurbsRenderer();
gluNurbsProperty(nurbs, GLU_SAMPLING_TOLERANCE, 25.0);
gluNurbsProperty(nurbs, GLU_DISPLAY_MODE, GLU_FILL);
gluNurbsCallback(nurbs, GLU_ERROR, (GLvoid (*)()) nurbsError);

}

void display(void)
{ glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

gluLookAt (10, 10, 10, 0, 0.0, 0.0, 0.0, 1.0, 0.0);
const int uKnotCount = 8, vKnotCount = 8;
float uKnots[uKnotCount] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
float vKnots[vKnotCount] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
int uStride = vOrder * 3, vStride = 3;
gluBeginSurface (nurbs);

gluNurbsSurface (nurbs,
uKnotCount, uKnots, vKnotCount, vKnots,
uStride, vStride, &controlPoints[0][0][0],
uOrder, vOrder, GL_MAP2_VERTEX_3);

gluEndSurface (nurbs);
glFlush();

}

Figure 13-13 Surface Constructed by NURBS

13.6 Subdivision Surface

We discuss before that any surface can be approximated by a mesh of polygons, in particu-
lar triangles. Very often we can start from a coarse mesh and subdivide each polygon into
smaller faces to obtain finer representation.

In general, we define the subdivision surfaces recursively. We start with a given polyg-
onal mesh and apply a refinement scheme to subdivide the polygons of it, creating new

30 Subdivision Surface

vertices and new faces. We compute the positions of the new vertices using affine com-
binations of nearby old vertices. The refinement process produces a denser mesh than the
original one, containing more polygonal faces. We can apply the same refinement process
to the resulting mesh repeatedly until we obtain a smooth surface we want.

We consider a simple example to illustrate this subdivision technique; we approximate
a unit sphere centered at O = (0, 0, 0) with a mesh of triangles. We first approximate the
sphere using a mesh of 20 equivalent triangles defined by 12 vertices. Each vertice is on
the sphere and its coordinates are defined by three values, X , Z, and 0 where

X = .525731112119133606, Z = .850650808352039932

Note that the sum of the squares of X and Z is equal to 1. That is,

X2 + Z2 = 1 (13.60)

Therefore, any vertice P = (x, y, z) of any triangle of the mesh has a unit normal at it,
which can be calculated by

n = P −O = (x, y, z)− (0, 0, 0) = (x, y, z) (13.61)

Obvisously, the magnitude of n is |n| = x2 + y2 + z2 = X2 + Z2 + 02 = 1.
We define the 12 vertices and the 20 faces of the mesh using two arrays:

//vertex data
static double vdata[12][3] = {

{-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},
{0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
{Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0}

};
//indices for triangles
static int tindices[20][3] = {

{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };

For example, the first triangle is defined by the indices {0, 4, 1} of the vertex array
vdata[]; thus the coordinates of its vertices are given by vdata[0], vdata[4], and vdata[1],
which have coordinate values

{-X, 0.0, Z}, {0.0, Z, X}, {X, 0.0, Z}

To refine the mesh, we subdivide a triangle into smaller triangles by making affine com-
binations of the original three vertices as shown in Figure 13-14 below. In the figure, the
original triangle is defined by the three points P1, P2, and P3. New triangles are formed by
creating new vertices that are formed by affine combinations of the three vertices:

P12 = 1
2(P1 + P2)

P23 = 1
2(P2 + P3)

P31 = 1
2(P3 + P1)

(13.62)

Chapter 13 Curves and Surfaces 31

P1 P2

P3

P12

P23P31

Figure 13-14 Subdividing a Triangle

Since a triangle always lies in a plane, the newly created triangles all lie in the same
plane as the original one and they are beneath the the surface of the unit sphere. Obviously,
these new triangles will not improve our approximation if we render them as is. To make
the actual improvement, the trick is to move the new vertices P12, P23, and P31, which are
at a distance of less than 1 from the sphere center, to the surface of the sphere. This can be
done by normalizing the normal to each point and moving the point to the tip of the unit
normal. For example, we calculate the normal Nij at Pij by:

Nij = Pij −O (13.63)

We then normalize it by:

nij =
Nij

|Nij|
(13.64)

We recalculate the new position P ′ij of the vertex Pij by:

P ′ij = nij +O (13.65)

Now P ′ij lies on the spherical surface as it is at a unit distance from the sphere center.
The effect of the normalization process is to ‘push out’ the new vertices onto the spherical
surface. (Keep in mind that the difference between two points is a vector and the sum of
a vector and a point is a point. It is wrong and would be sloppy if we ‘normalize’ a point
directly.)

As shown in Figure 13-14, we subdivide a triangle into four smaller ones and by ’push-
ing’ the three new vertices onto the surface of the unit sphere, we have refined the mesh,
which now has a total of 4× 20 = 80 faces. The following code segment shows an imple-
mentation of this process and the output of it is shown in Figure 13-15 below.

Point3 vertices[12];

void midPoint(const Point3 &p1, const Point3 &p2, Point3 &p12)
{

p12.x = (p1.x + p2.x) / 2.0;
p12.y = (p1.y + p2.y) / 2.0;
p12.z = (p1.z + p2.z) / 2.0;

}

void triangle(const Point3 &p1, const Point3 &p2, const Point3 &p3)
{

glBegin(GL_TRIANGLES);
glNormal3f(p1.x, p1.y, p1.z); glVertex3f(p1.x, p1.y, p1.z);
glNormal3f(p2.x, p2.y, p2.z); glVertex3f(p2.x, p2.y, p2.z);

32 Subdivision Surface

glNormal3f(p3.x, p3.y, p3.z); glVertex3f(p3.x, p3.y, p3.z);
glEnd();

}

void subdivide(const Point3 &p1, const Point3 &p2, const Point3 &p3)
{

Point3 p12, p23, p31;

midPoint (p1, p2, p12);
midPoint (p2, p3, p23);
midPoint (p3, p1, p31);

Point3 O (0, 0, 0); //center of sphere
Vector3 v12, v23, v31; //3D vectors
v12 = p12 - O;
v23 = p23 - O;
v31 = p31 - O;
//normalize the vectors
v12.normalize();
v23.normalize();
v31.normalize();
//find vertices at vector tips
p12 = v12 + O;
p23 = v23 + O;
p31 = v31 + O;
triangle (p1, p12, p31);
triangle (p2, p23, p12);
triangle (p3, p31, p23);
triangle (p12, p23, p31);

}

void init(void)
{

glClearColor (1.0, 1.0, 1.0, 0.0);
for (int i = 0; i < 12; i++)

vertices[i] = Point3 (vdata[i]);
}

void display(void)
{

glClear (GL_COLOR_BUFFER_BIT);
glLineWidth (2);
glColor3f (0.0, 0.0, 0.0);
glLoadIdentity ();
gluLookAt(2.2, 2.2, 2.2, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
for (int i = 0; i < 20; i++) {

int i0 = tindices[i][0];
int i1 = tindices[i][1];
int i2 = tindices[i][2];
subdivide(vertices[i0], vertices[i1], vertices[i2]);

}
glFlush ();

}

Chapter 13 Curves and Surfaces 33

Figure 13-15 Sphere of 80 Triangles Constructed by Subdivision

We can continue to subdivide the triangles recursively until we are satisfied with the re-
finement of the mesh. To accomplish this recursive property, we just need to make slight
modifications to the above subdivide() function:

void subdivide(const Point3 &p1, const Point3 &p2, const Point3 &p3,
int level)

{
Point3 p12, p23, p31;

midPoint (p1, p2, p12);
midPoint (p2, p3, p23);
midPoint (p3, p1, p31);

Point3 O (0, 0, 0); //sphere center
Vector3 v12, v23, v31; //3D vectors
v12 = p12 - O;
v23 = p23 - O;
v31 = p31 - O;
//normalize the vectors
v12.normalize();
v23.normalize();
v31.normalize();
//find vertices at vector tips
p12 = v12 + O;
p23 = v23 + O;
p31 = v31 + O;
if (level > 0) { //subdivide recursively

--level;
subdivide (p1, p12, p31, level);
subdivide (p2, p23, p12, level);
subdivide (p3, p31, p23, level);
subdivide (p12, p23, p31, level);

} else {
triangle (p1, p12, p31);
triangle (p2, p23, p12);
triangle (p3, p31, p23);
triangle (p12, p23, p31);

}

34 Subdivision Surface

}

Figure 13-16 shows a sphere constructed with one more level of subdivision, consisting
of 4× 80 = 320 triangles.

Figure 13-16 Sphere of 320 Triangles Constructed by Subdivision

Chapter 13 Curves and Surfaces 35

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth. See http://www.forejune.com/

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

36 Subdivision Surface

An Introduction to Digital Video Data
Compression in Java

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in java. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding. See

http://www.forejune.com/
January 2011

ISBN-10: 1456570870

ISBN-13: 978-1456570873

———————————————————————————————————–

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

	Chapter 13 Curves and Surfaces
	13.1 Representation of Curves and Surfaces
	13.1.1 Explicit Representation
	13.1.2 Implicit Representation
	13.1.3 Parametric Representation
	13.1.4 Geometric Continuity

	13.2 Interpolation
	13.2.1 Polynomial Parametric Curves
	13.2.2 Interpolation Polynomial
	13.2.3 Lagrange's Method
	13.2.4 Neville's Algorithm and Barycentric Formula

	13.3 Bezier Curves and Surfaces
	13.3.1 Bezier Curve
	13.3.2 Cubic Bezier Curve
	13.3.3 Bezier Surface

	13.4 B-Splines
	13.4.1 B-Spline Properties
	13.4.2 Knot Vector and Basis Functions
	13.4.3 Cubic Uniform B-Splines
	13.4.4 Non Uniform Rational B-Splines (NURB)

	13.5 OpenGL Evaluators and NURBS
	13.5.1 OpenGL Evaluators for Bezier Curves and Surfaces
	13.5.2 The GLU NURBS

	13.6 Subdivision Surface

