
An Introduction to 3D Computer Graphics, Stereoscopic Image,
and Animation in OpenGL and C/C++

Fore June

Chapter 18 Vertex Array

18.1 Function Calls

We have discussed that we can specify the shapes of a graphics object by calling a sequence of
glVertex* commands, which are enclosed within a pair of glBegin/glEnd functions. Actually,
each glVertex* command is also a function. This is not an efficient method because function
calls are expensive as they involve pushing and popping parameters onto a stack, and this method
involves a lot of redundant function calls; the shared vertices have to be specified again and again.
For example, consider rendering a cube, which is shown in Figure 18-1 below. A cube has 6 faces
and 8 vertices. We need 4 vertices to specify a face. To render a cube using glBegin/glEnd, we
will process a total of 6× 4 = 24 vertices though only 8 different vertices exist.

To avoid redundant function calls, OpenGL provides vertex array routines to process arrays of
vertices with fewer function calls. Vertex arrays make graphics programming more efficient and
effective.

0
1

23

4 5

6
7

Back

Front

Figure 18-1 A Cube With Indexed Vertices

18.2 Vertex Array Process

There are three steps in the process of using vertex array routines:

1. Enabling Arrays.
We enable the usage of vertex arrays with the command glEnableClientState, which has
protocol:

void glEnableClientState(GLenum array)
Specifies the array to enable.
Acceptable Symbolic constants:
GL VERTEX ARRAY, GL COLOR ARRAY, GL INDEX ARRAY,
GL NORMAL ARRAY, GL TEXTURE COORD ARRAY, and
GL EDGE FLAG ARRAY

For example, if we use lighting, we need to define a surface normal for each vertex. In this
situation, we have to activate both the surface normal and vertex coordinate arrays with:

2

Chapter 18 Vertex Array 3

glEnableClientState (GL_NORMAL_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);

The lighting effect can be turned off by:

glDisableClientState(GL_NORMAL_ARRAY);

2. Specifying Data for the Arrays.
We specify the data for a vertex array with the function glVertexPointer:

void glVertexPointer(GLint size, GLenum type,
GLsizei stride, const GLvoid *pointer);

Specifies where spatial coordinate data can be accessed; pointer is the
memory address of the first coordinate of the first vertex in the array;
type specifies the data type (GL SHORT, GL INT, GL FLOAT, or
GL DOUBLE) of each coordinate in the array; size is the number of
coordinates per vertex, which must be 2, 3, or 4; stride is the byte
offset between consecutive vertexes; if stride is 0, the vertices are
tightly packed in the array.

Commands for specifying other array data include:

void glColorPointer(GLint size,GLenum type,GLsizei stride,
const GLvoid *pointer);

void glIndexPointer(GLenum type,GLsizei stride,
const GLvoid *pointer);

void glNormalPointer(GLenum type,GLsizei stride,
const GLvoid *pointer);

void glTexCoordPointer(GLint size,GLenum type,GLsizei stride,
const GLvoid *pointer);

void glEdgeFlagPointer(GLsizei stride, const GLvoid *pointer);

The following table shows various vertex array sizes (Values per Vertex) and data types:

Command Sizes Values for type Argument

glVertexPointer 2, 3, 4
GL SHORT, GL INT, GL FLOAT,
GL DOUBLE

glNormalPointer 3
GL BYTE, GL SHORT, GL INT,
GL FLOAT, GL DOUBLE

glColorPointer 3, 4

GL BYTE, GL UNSIGNED BYTE,
GL SHORT, GL UNSIGNED SHORT,
GL INT, GL UNSIGNED INT, GL FLOAT,
GL DOUBLE

glIndexPointer 1
GL UNSIGNED BYTE, GL SHORT,
GL INT, GL FLOAT, GL DOUBLE

glTexCoordPointer 1, 2, 3, 4
GL SHORT, GL INT, GL FLOAT,
GL DOUBLE

glEdgeFlagPointer 1
no type argument (type of data must be
GLboolean)

The following is an example of enabling and loading vertex arrays, which specify 6 vertices,
each with 2 coordinates and 6 different colors, each with 3 values for the RGB components:

int vertices[] = { 20, 20, 100, 300,
180, 20, 180, 300,

4 Vertex Array Process

245, 20, 300, 300};
float colors[] = {0.8, 0.2, 0.2, 0.2, 0.8, 1.0,

0.6, 1.0, 0.2, 0.8, 0.8, 0.6,
0.3, 0.3, 0.3, 0.6, 0.6, 0.6};

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);

glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, 0, vertices);

In the above example, the stride values are 0, meaning that the data are closely packed.
To show the usage of the parameter stride, which tells OpenGL how to access the data we
provide, we consider another example where the vertex coordinates and color values are
stored in the same array:

float mixed_data[] = { 20.0, 20.0,0.0, 0.8,0.2,0.2,
100.0,300.0,0.0, 0.2,0.8,1.0,
180.0, 20.0,0.0, 0.6,1.0,0.2,
180.0,300.0,0.0, 0.8,0.8,0.6,
245.0, 20.0,0.0, 0.3,0.3,0.3,
300.0,300.0,0.0, 0.6,0.6,0.6};

In this mixed data array, the left column contains the vertex coordinates and the right column
contains the corresponding color values. The stride parameter allows a vertex array to access
its desired data at regular intervals in the array, and its value should be the number of bytes
between the starts of two successive pointer elements, or zero, which is the special case when
the data are tightly packed. So in this example, we provide access to the vertex coordinates
with the command:

glVertexPointer(3,GL_FLOAT,6*sizeof(float),mixed_data);

For the color values, we start from the fourth element of the array mixed data. This can can
be accomplished by the command:

glColorPointer(3,GL_FLOAT,6*sizeof(float),mixed_data+3);

3. Dereferencing and Rendering.
We dereference a single array element with glArrayElement:

void glArrayElement(GLint ith)
Obtains the data of one (the ith) vertex for all currently enabled arrays.
For the vertex coordinate array, the corresponding command would be
glVertex[size][type]v(), where size is one of [2,3,4], and type is one of
[s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble respectively. Both
size and type were defined by glVertexPointer(). For other enabled
arrays, glArrayElement() calls glEdgeFlagv(),
glTexCoord[size][type]v(), glColor[size][type]v(), glIndex[type]v(),
and glNormal[type]v(). If the vertex coordinate array is enabled, the
glVertex*v() routine is executed last, after the execution (if enabled) of
up to five corresponding array values.

The following is an example of drawing a triangle using this command:

Chapter 18 Vertex Array 5

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);
glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, 0, vertices);

glBegin(GL_TRIANGLES);
glArrayElement (2);
glArrayElement (3);
glArrayElement (4);

glEnd();

When we execute the above code, the last five statements has the same effect as the following
code:

glBegin(GL_TRIANGLES);
glColor3fv(colors+(2*3));
glVertex2iv(vertices+(2*2));
glColor3fv(colors+(3*3));
glVertex2iv(vertices+(3*2));
glColor3fv(colors+(4*3));
glVertex2iv(vertices+(4*2));

glEnd();

We dereference a list of array elements with glDrawElements:

void glDrawElements(GLenum mode, GLsizei count,
GLenum type, void *indices)

Specifies multiple geometric primitives with very few subroutine calls.
Instead of calling a GL function to pass each vertex attribute, we can
use glVertexAttribPointer to prespecify separate arrays of vertex
attributes and use them to construct a sequence of primitives with a
single call to glDrawElements.
When glDrawElements is called, it uses count sequential elements
from an enabled array, starting at indices to construct a sequence of
geometric primitives; type specifies the type of indices values, which
must be GL UNSIGNED BYTE or GL UNSIGNED SHORT.
mode specifies what kind of primitives are constructed and how the
array elements construct these primitives (GL POLYGON,
GL POINTS,...). If more than one array is enabled, each is used. We
can call glEnableVertexAttribArray and
glDisableVertexAttribArray to enable and disable a generic vertex
attribute array.

This command almost has the same effect as:

int i;
glBegin (mode);

for (i = 0; i < count; i++)
glArrayElement(indices[i]);

glEnd();

6 Drawing a Cube

18.3 Drawing a Cube

As an example of illustrating the usage of the vertex array commands discussed above, we discuss
drawing a colored cube here. Suppose the vertices of the cube is numbered as shown in Figure
18-1 above, and the vertex and color data are defined by:

GLint vertices[] = {-1, -1, -1, //vertex 0
1, -1, -1, //vertex 1
1, 1, -1, // 2

-1, 1, -1, // 3
-1, -1, 1, // 4
1, -1, 1, // 5
1, 1, 1, // 6

-1, 1, 1}; // 7

GLfloat colors[] = {1.0, 0.2, 0.2, //color at vertex 0
0.2, 0.2, 1.0, //color at vertex 1
0.8, 1.0, 0.2,
0.7, 0.7, 0.7,
0.3, 0.3, 0.3,
0.5, 0.5, 0.5,
1.0, 0.0, 0.0,
0.0, 1.0, 0.0}; //color at vertex 7

glVertexPointer (3, GL_INT, 0, vertices);
glColorPointer (3, GL_FLOAT, 0, colors);

Suppose we have made the appropriate setup of viewing and have enabled the usage of vertex
array. We can render the cube with the commands:

glBegin(GL_QUADS);
glArrayElement (4); // front face (see notes)
glArrayElement (5);
glArrayElement (6);
glArrayElement (7);

glArrayElement (0); // back face
glArrayElement (3);
glArrayElement (2);
glArrayElement (1);

glArrayElement (1); // right face
glArrayElement (2);
glArrayElement (6);
glArrayElement (5);
.....

glEnd();

In this method, we have to call glArrayElement 24 times. A better method is to define the
indices of each face and draw it with the glDrawElements command:

GLubyte frontIndices[] = {4, 5, 6, 7};
GLubyte backIndices[] = {0, 3, 2, 1};
GLubyte rightIndices[] = {1, 2, 6, 5};
GLubyte leftIndices[] = {0, 4, 7, 3};
GLubyte topIndices[] = {2, 3, 7, 6};

Chapter 18 Vertex Array 7

GLubyte bottomIndices[]= {0, 1, 5, 4};

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topIndices);

Using glDrawElements, we only need to call the function 6 times. Also note that we do not
need to enclose the functions with the glBegin/End pair. Better still, we can put all indices in one
array and draw the cube with only one command:

GLubyte allIndices[] = {4, 5, 6, 7, 0, 3, 2, 1, 1, 2, 6, 5,
0, 4, 7, 3, 2, 3, 7, 6, 0, 1, 5, 4};

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allIndices);

Figure 18-2 shows two cubes that are rendered with these methods.

Figure 18-2 Two Colored Cubes Rendered Usinge glDrawElements

	Chapter 19 OpenGL Shading Language (GLSL)
	19.1 Extending OpenGL
	19.2 OpenGL Shaders Execution Model
	19.3 OpenGL Shading Language API
	19.4 Data Types in GLSL
	19.5 The OpenGL Extension Wrangler Library
	19.6 Drawing Polygons
	19.6.1 Creating a Shader Class
	19.6.2 Drawing a Triangle
	19.6.2 Temperature Shader
	19.6.3 Drawing a Wireframe Tetrahedron
	19.6.4 Drawing a Color Solid Tetrahedron

	19.7 Drawing Spheres
	19.7.1 Spherical Coordinates
	19.7.2 Rendering a Wireframe Sphere
	19.7.3 Rendering a Color Solid Sphere
	19.7.4 Lighting a Sphere

	19.8 Animation
	19.8.1 Animating a Color Sphere
	19.8.2 Animated Particle Systems
	19.8.3 Morphing

	19.9 Texture Shaders
	19.9.1 A Simple Texture Example
	19.9.1 Bump Mapping with Shaders

