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Chapter 19 OpenGL Shading Language (GLSL)

19.1 Extending OpenGL

The OpenGL architecture we have presented in previous chapters is called fixed-pipeline archi-
tecture, in which the functionality of each processing stage is fixed. The user can control the
parameters to the functions but the underlying processing of the functions are fixed. All OpenGL
versions up to 1.5 are based on this fixed-function pipeline. Figure 19-1 below shows this tradi-
tional fixed function pipeline architecture:
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Figure 19-1. Fixed Function Pipeline

Before version 2.0, to modify OpenGL we must define the new features through extensions. Con-
sequently, a lot of OpenGL functionality is available in the form of extensions that expose new
hardware functionality. OpenGL has well-defined extensions for hardware vendors to define and
implement special graphics features. For complex applications, there is a trend in graphics hard-
ware to replace fixed functionality with programmability, including vertex processing and frag-
ment processing.

Since version 2.0, besides supporting the fixed pipeline architecture, OpenGL also supports the
programmable pipeline, which replaces the fixed function transformations and fragment pipeline
by programmable shaders as shown in Figure 19-2 below.

The OpenGL Shading Language (glsl) is designed to address the programmable issue and is
part of the OpenGL distribution. It allows programmers to write shaders to alter the processing of
the graphics attributes along the pipeline. GLSL is an extension of the original OpenGL with the
following properties:

1. GLSL is included in OpenGL 2.0, which was released in 2004.

2. Other competing shading languages include Cg (C for Graphics), which is cross platform
and HLSL (High Level Shading Language) by Microsoft, which is used in DirectX.

GLSL is part of OpenGL. Therefore, it is naturally easily integrated with OpenGL programs.
It is a C-like language with some C++ features,

It is mainly used for processing numerics, but not for strings or characters.

OpenGL 1.5 has fixed function pipeline.

OpenGL 2.0 allows processors to be programmed, introducing GLSL, which is approved by
OpenGL Architectural Review Board (ARB).
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8. With programmed shaders, data flow from the application to the vertex processor, on to the
fragment processor and ultimately to the frame buffer. This allows vendors to produce faster
graphics hardware with more parallel features.
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Figure 19-2. Programmable Pipeline

19.2 OpenGL Shaders Execution Model

We can consider a driver as a piece of software that manages the access of a hardware. In this
sense, we can view OpenGL libraries as drivers because they manage shared access to the under-
lying graphics hardware; applications communicate with graphics hardware by calling OpenGL
functions. An OpenGL shader is embedded in an OpenGL application and may be viewed as an
object in the driver to access the hardware. We use the command glCreateShader() to allocate
within the OpenGL driver the data structures needed to store an OpenGL shader. The source code
of a shader is provided by an application by calling glShaderSource() and we have to provide
the source code as a null-terminated string to this function.. Figure 19-3 below shows the steps to
create a shader program for execution.

There are two kinds of shaders, the vertex shaders and the fragment shaders. A vertex shader
(program) is a shader running on a vertex processor, which is a programmable unit that oper-
ates on incoming vertex values. This processor usually performs traditional graphics operations
including the following:

vertex transformation

normal transformation and normalization
texture coordinate generation

texture coordinate transformation
lighting

6. color material application

M NES

The following is an example of a simple “pass-through” vertex shader, which does not do anything:

//A simple pass-through vertex shader
void main ()
{
gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix x gl_Vertex;

}
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A fragment shader is a shader running on a fragment processor, which is a programmable
unit that operates on fragment values. A fragment is a pixel plus its attributes such as color and
depth. A fragment shader is executed after the rasterization. Therefore a fragment processor
operates on each fragment rather than on each vertex. It usually performs traditional graphics
operations including:

operations on interpolated values
texture access, and application
fog effects

color sum

pixel zoom

scaling

color table lookup

convolution

color matrix operations

P NN R W=
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The following is an example of a simple fragment shader which sets the color of each fragment
for rendering.

//A simple fragment shader
void main () {

gl_FragColor = gl_FrontColor;
}

19.3 OpenGL Shading Language API

Figure 19-3 below shows the development steps of a glsl shader program.
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string
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Figure 19-3 Shader Program Development
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Table 19-1 below lists the OpenGL functions involved in the process.

Table 19-1 OpenGL Commands for Embedding Shaders
glCreateShader() Creates one or more shader objects.
glShaderSource() Provides source codes of shaders.
glCompileShader() | Compiles each of the shaders.
glCreateProgram() | Creates a program object.
glAttachShader() Attach all shader objects to the program.
glLinkProgram() Link the program object.
glUseProgram() Install the shaders as part of the OpenGL program.

The following are the normal steps to develop an OpenGL shader program.
1. Creating a Shader Object

We first create an empty shader object using the function glCreateShader, which has
the following prototype:

Gluint glCreateShader ( GLenum shaderType )

Creates an empty shader.

shaderType specifies the type of shader to be created. It can be either GL_-VERTEX_SHADER
or GL_LFRAGMENT_SHADER.

Return: A non-zero integer handle for future reference.

2. Providing Source Code for the Shader

We pass the source code to the shader as a null-terminated string using the function
glShaderSource which has the prototype:

void glShaderSource ( GLuint shader, GLsizei count, const GLchar **string, const GLint
*lengthp )

Defines a shader’s source code.

shader is the shader object created by glCreateShader().

string is the array of strings specifying the source code of the shader.

count is the number of strings in the array.

lengthp points to an array specifying the lengths of the strings. If NULL, the strings are NULL-
terminated.

The source code can be hard-coded as a string in the OpenGL program or it can be
saved in a separate file and read into an array as a null-terminated string. The follow-
ing example shows how this is done.

struct stat statBuf;
FILEx fp = fopen ( fileName,
charx buf;

"oy

stat ( fileName, &statBuf );

buf = (char*) malloc ( statBuf.st_size + 1 x sizeof (char) );
fread ( buf, 1, statBuf.st_size, fp );
buf [statBuf.st_size] = "\0’;

fclose ( fp );
return buf;

In the example, the stat() function gives detailed information about a file; from it we
obtain the size of the file containing the shader source code and allocate the buffer buf
to hold the string. At the end of the string we save the null character ‘\0’ to indicate
its end.
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3. Compiling Shader Object

We use the function glCompileShader to compile the shader source code to object
code. This function has the following prototype.

void glCompileShader ( GLuint shader )
Compiles the source code strings stored in the shader object shader.
The function glShaderInfoLog gives the compilation log.

4. Linking and Using Shaders

Each shader object is compiled independently. To create a shader program, we need to
link all the shader objects to the OpenGL application. These are done within the C/C++
application using the functions glCreateProgram, glAttachShader, glLinkProgram,
and glUseProgram, which have the prototypes listed below. These are done while we
are running the C/C++ application. Performing the steps of compiling and linking
shader objects are simply making C function calls.

GLuint glCreateProgram ( void )
Creates an empty program object and returns a non-zero integer handle for future reference.

void glAttachShader ( GLuint program, GLuint shader )
Attaches the shader object specified by shader to the program object specified by program.

void glLinkProgram ( GLuint program )
Links the program objects specified by program.

void glUseProgram ( GLuint program )

Installs the program object specified by program as part of current rendering state.

If program is 0, the programmable processors are disabled, and fixed functionality is used for
both vertex and fragment processing.

5. Cleaning Up

At the end, we need to release all the resources taken up by the shaders. The clean up
is done by the commands,

void glDeleteShader ( GLuint shader ),

void glDeleteProgram ( GLuint program ),

void glDetachShader ( GLuint program, GLuint shader ).

Listing 19-1 (a)-(c) below is a complete example of a shader program; the OpenGL applica-
tion is the C/C++ program tests.cpp, which does the shader creation, reading shader source code,
shader compilation and shader linking. The shader source code for the vertex shader is saved in
the text file tests.vert, and the code for the fragment shader is saved in tests.frag. In compiling
tests.cpp, we need to link the GL extension library by “-IGLEW”. If we compile “tests.cpp” to the
executable “tests”, we can run the shader program by typing “./tests” and press ‘Enter’. Note that
when we change the code of a shader ( “tests.vert” or “tests.frag” ), we do not need to recompile
the C/C++ program “tests.cpp”. We just need to execute “./tests” and the changed features will
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take place. Figure 19-4 below shows the output of executing “tests”.

Program Listing 19-1 Complete Example of a Shader Program

(a) tests.cpp

/%
tests.cpp
Sample program showing how to write GL shader programs.
Shader sources are in files "tests.vert" and "tests.frag".
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <GL/glew.h>
#include <GL/glut.h>

using namespace std;

// Global handles for the current program object, with its two shader objects
GLuint programObject = 0;

GLuint vertexShaderObject = 0;

GLuint fragmentShaderObject = 0;

static GLint win = 0;

int readShaderSource (char xfileName, GLchar =*xshader )

{
// Allocate memory to hold the source of our shaders.
FILE xfp;
int count, pos, shaderSize;

fp = fopen( fileName, "r");

if ( 'fp )
return O;

struct stat statBuf;

stat ( fileName, &statBuf );

shaderSize = statBuf.st_size;

if ( shaderSize <= 0 ) {
printf ("Shader %s empty\n", fileName);
return 0;

+*shader = (GLchar %) malloc( shaderSize + 1);
// Read the source code
count = (int) fread(xshader, 1, shaderSize, fp);

(xshader) [count] = "\0’;

if (ferror (fp))
count = 0;

fclose (fp);

return 1;

int installShaders ( const GLchar xvs, const GLchar *fs )

GLint vertCompiled, fragCompiled; // status values
GLint 1linked;
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// Create a vertex shader object and a fragment shader object
vertexShaderObject = glCreateShader ( GL_VERTEX_SHADER );
fragmentShaderObject = glCreateShader ( GL_FRAGMENT_SHADER );

// Load source code strings into shaders, compile and link
glShaderSource ( vertexShaderObject, 1, &vs, NULL );
glShaderSource ( fragmentShaderObject, 1, &fs, NULL );

glCompileShader ( vertexShaderObject );
glGetShaderiv ( vertexShaderObject, GL_COMPILE_STATUS, &vertCompiled );

glCompileShader ( fragmentShaderObject );
glGetShaderiv ( fragmentShaderObject, GL_COMPILE_STATUS, &fragCompiled);

if (!vertCompiled || !fragCompiled)
return 0;

// Create a program object and attach the two compiled shaders
programObject = glCreateProgram();

glAttachShader ( programObject, vertexShaderObject);
glAttachShader ( programObject, fragmentShaderObject);

// Link the program object
glLinkProgram(programObject) ;
glGetProgramiv (programObject, GL_LINK_STATUS, &linked);

if (!linked)
return 0;

// Install program object as part of current state
glUseProgram ( programObject );

return 1;
int init (void)

{

GLchar *VertexShaderSource, x*FragmentShaderSource;

int loadstatus = 0;
const char xversion = (const char x) glGetString ( GL_VERSION );
if (version[0] < 72’ || version[l] != ".") {

printf ("This program requires OpenGL >= 2.x, found %$s\n", version);
return 0;
}
readShaderSource ("tests.vert", &VertexShaderSource );
readShaderSource ("tests.frag", &FragmentShaderSource );
loadstatus = installShaders (VertexShaderSource, FragmentShaderSource) ;
if ( !loadstatus ) {
printf ("\nCompilation of shaders not successful!\n");

return loadstatus;

static void reshape (int width, int height)

{
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 25.0);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();
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glTranslatef (0.0f, 0.0f, -15.0f);

}

void CleanUp (void)

{
glDeleteShader (vertexShaderObject) ;
glDeleteShader (fragmentShaderObject) ;
glDeleteProgram(programObject) ;
glutDestroyWindow (win) ;

void display (void)
{

glClearColor ( 1.0, 1.0, 1.0, 0.0 ); //get white background color
glClear ( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );
glColor3f ( 0, 1, 0 ); //green, no effect if shader is loaded

glLinewWidth ( 4 );
glutWireSphere ( 2.0, 16, 8 );
glutSwapBuffers () ;

glFlush();

int main(int argc, char xargv([])
{
glutInit (&argc, argv);
glutInitWindowPosition( 0, 0 );
glutInitWindowSize ( 300, 300 );
glutInitDisplayMode ( GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH );
win = glutCreateWindow (argv[0]);
glutReshapeFunc ( reshape );
glutDisplayFunc ( display );
// Initialize the "OpenGL Extension Wrangler" library
glewInit ();

int successful = init();
if ( successful )
glutMainLoop () ;

return 0;

(b) tests.vert

// tests.vert : a minimal vertex shader
void main (void)
{

gl_Position = gl_ModelViewProjectionMatrix % gl_Vertex;

(c) tests.frag

// tests.frag : a minimal fragment shader
void main (void)
{
gl_FragColor = vec4( 1, 0, 0, 1); //red color
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O .ftests [=a](x]

Figure 19-4 Output of Shader Program tests.cpp

19.4 Data Types in GLSL

There are four main data types in GLSL: float, int, bool, and sampler. Vector types are available
for the first three types:

vec2, vec3, vecd 2D, 3D and 4D floating point vector
ivec2, ivec3, ivecd 2D, 3D and 4D integer vector
bvec2, bvec3, bvecd4 | 2D, 3D and 4D boolean vectors

For floats there are also matrix types:

| mat2, mat3, mat4 | 2 x 2,3 x 3,4 x 4 floating point matrix |

Samplers are types used for representing textures:

sampler1D, sampler2D, sampler3D 1D, 2D and 3D texture
samplerCube Cube Map texture
sampler1Dshadow, sampler2Dshadow | 1D and 2D depth-component texture

Attributes, Uniforms and Varyings

GLSL shaders have three different input-output data types for passing data between vertex
and fragment shaders, and the OpenGL application. The data types are uniform, attribute and
varying. They must be declared as global (visible to the whole shader object). The variables have
the following properties:

1. Uniforms : These are read-only variables (i.e. A shader object can only read the variables
but cannot change them.). Their values do not change during a rendering. Therefore, Uni-
form variable values are assigned outside the scope of glBegin/glEnd. Uniform variables are
used for sharing data among an application program, vertex shaders, and fragment shaders.

2. Attributes: These are also read-only variables. They are only available in vertex shaders.
They are used for variables that change at most once per vertex in a vertex shader. There
are two types of attribute variables, user-defined and built-in. The following are examples
of user-defined attributes:

attribute float x;
attribute vec3 velocity, acceleration;
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Built-in variables include OpenGL state variables such as color, position, and normal; the
following are some examples:

gl_Vertex
gl_Color

3. Varyings: These are read/write variables, which are used for passing data from a vertex
shader to a fragment shader. They are defined on a per-vertex basis but are interpolated over
the primitive by the rasterizer. They can be user-defined or built-in.

Built-in Types

The following tables list some more of the GLSL built-in types.
Table 19-2 Built-in Attributes (for Vertex Shaders)

gl_Vertex 4D vector representing the vertex position

gl_ Normal 3D vector representing the vertex normal

gl_Color 4D vector representing the vertex color

gl MultiTexCoordn | 4D vector representing the texture coordinate of texture n

Table 19-3 Built-in Uniforms (for Vertex and Fragment Shaders)

gl_ModelViewMatrix 4 x 4 Matrix representing the model-view matrix
gl_ModelViewProjectionMatrix | 4 x 4 Model-view-projection matrix
gl_NormalMatrix 3 x 3 Matrix used for normal transformation

Table 19-4 Built-in Varyings (for Data Sharing between Shaders)

gl_FrontColor 4D vector representing the primitives front color

gl_BackColor 4D vector representing the primitives back color

gl_TexCoord[n] | 4D vector representing the n-th texture coordinate

gl_Position 4D vector representing the final processed vertex position
(vertex shader only)

gl_FragColor 4D vector representing the final color written in the frame
buffer (fragment shader only)

gl_FragDepth float representing the depth written in the depth buffer
(fragment shader only)

GLSL has many built in functions, including

trigonometric functions: sin, cos, tan

inverse trigonometric functions: asin, acos, atan
mathematical functions: pow, log2, sqrt, abs, max, min

4. geometrical functions: length, distance, normalize, reflect

W=

Built-in types provide users an effective way to access OpenGL variables as they are mapped to
the OpenGL states. For example, if we call glLightfv(GL_LIGHTO0, GL_POSITION, myLight-
Position), its value is available as a uniform using gl_LightSource[0].position in a vertex and/or
fragment shader.

The following is an example of using various data types; it consists of a vertex shader and a
fragment shader for defining a modified Phong lighting model.

Program Listing 19-2 Shaders for Modified Phong Lighting

(a) Vertex Shader: phong.vert




12 The OpenGL Extension Wrangler Library

//phong.vert

varying vec3 N; //normal direction
varying vec3 L; //light source direction
varying vec3 E; //eye position

void main (void)

{
gl_Position =gl_ModelViewMatrixxgl_Vertex;
vecd4 eyePosition = gl_ModelViewProjectionMatrix*gl_ Vertex;
vecd eyelightPosition = gl_LightSource[0].position;

N = normalize( gl_NormalMatrixxgl_Normal );
L = eyelLightPosition.xyz - eyePosition.xyz;

E = -eyePosition.xyz;

(b) Fragment Shader: phong.frag

//phong. frag
varying vec3 Nj;
varying vec3 L;
varying vec3 E;
void main ()

{

vec3 norm = normalize (N);

vec3 lightv = normalize (L) ;

vec3 viewv = normalize (E);

vec3 halfv = normalize(lightv + viewv);
float f£;

if (dot (lightv, norm)>= 0.0) £ =1.0;
else £ = 0.0;

float Kd = max (0.0, dot(lightv, norm));

float Ks = pow(max (0.0, dot (norm, halfv)), gl_FrontMaterial.shininess);
vecd diffuse = Kd x gl_FrontMaterial.diffusexgl_LightSource[0].diffuse;
vecd4d ambient = gl_FrontMaterial.ambientxgl_LightSource[0].ambient;

vecd4 specular = fxKsxgl_FrontMaterial.specular*gl_LightSource[0].specular;
gl_FragColor = ambient + diffuse + specular;

19.5 The OpenGL Extension Wrangler Library

To develop applications with glsl, we also need the OpenGL Extension Wrangler Library (GLEW),
which is a cross-platform open-source C/C++ extension loading library. It is a simple tool pro-
viding efficient run-time mechanisms to determine the OpenGL extensions that are supported on
the target platform. An application uses the OpenGL core and extension functionality in a sin-
gle header file. The library has been tested on a various operating systems, including Windows,
Linux, Mac OS X, FreeBSD, Irix, and Solaris. Currently, the library supports OpenGL 4.4 and the
following extensions:

1. OpenGL extensions
2. WGL extensions
3. GLX extensions

We can download the package from the site:

http://sourceforge.net/projects/glew/
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The compilation and installation process is simple and is described in the README.txt file of the
package. The version that we have used to test the programs described here is glew-1.11.0.

19.6 Drawing Polygons

To make our code easier to be ported to OpenGL ES platforms, the graphics objects of many of
our examples are drawn using triangles. OpenGL ES, where ES stands for embedded systems,
is a streamlined version of OpenGL for rendering sophisticated 3D graphics on handheld and
embedded devices.

19.6.1 Creating a Shader Class

We have seen in Section 19.3 that we always need to call the same few functions to create shaders
that render graphics objects. It will be more convenient if we create a base class called Shader to
call these functions and do the miscellaneous initializations such as compiling and linking. When
we draw an actual shape such as a triangle or a rectangle, we can always create a corresponding
class that extends this base class to draw the actual shape. This concept is shown in Figure 19-5
below.

Shader

Triangle Rectangle

Figure 19-5 Shader Class and Typical Subclasses

Subclasses or applications should provide the shader source codes to the functions of the Shader
class, which does the routine work of creating shader programs and objects, compiling the shader
source code, linking the shaders, attaching the shaders, using the shader programs and cleaning up
as shown in Figure 19-3 above. The following shows the members of this class:

//Shader.h
class Shader
{
public:
int program;
int vertexShader;
int fragmentShader;
char xinfolog;
Shader () ;
“Shader () ;
int loadShader (int shaderType, const string xshaderCode );
bool createShader( const string xvs, const string =*fs );
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Creating a Shader Class

void cleanUp();

Typically, an application (or a subclass) calls the function createShader of this class to create a

vertex shader and a fragment shader. The application provides pointers as input string parameters,
pointing to the source code of the vertex shader (vs and that of the fragment shader (fs). If the
application only needs to create one shader, it can set the other pointer pointing to NULL. The
following is its implementation:

bool Shader::createShader( const string xvs, const string =xfs )

{

// create empty OpenGL Program, load, attach, and link shaders
program = glCreateProgram();
if ( vs != NULL ) {
vertexShader = loadShader ( GL_VERTEX_SHADER, vs);
// add the vertex shader to program
glAttachShader (program, vertexShader) ;
}
if ( vs != NULL ) {
fragmentShader = loadShader ( GL_FRAGMENT_SHADER, fs);
// add the fragment shader to program
glAttachShader (program, fragmentShader) ;
}
glLinkProgram(program); // creates program executables
int linked;
glGetProgramiv (program, GL_LINK_STATUS, &linked);

if (!linked) {
printf ( "Shader not linked!\n" );
return false; // mission failed

glUseProgram( program); // use shader program

return true; // mission successful

This function actually calls the other member function, loadShader to create a shader object

and compile it. The function loadShader also saves the log information in memory, and the data
member pointer infoLog points at the memory. If necessary, the application can examine the log
for debugging or other purposes. The following is its implementation:

int Shader::loadShader (int shaderType, const string xshaderCode)

{

// create a vertex shader type ( GL_VERTEX_SHADER)
// or a fragment shader type ( GL_FRAGMENT_SHADER)
int shader = glCreateShader( shaderType);

// pass source code to the shader and compile it
char *strPointer = (char *) shaderCode->c_str();
glShaderSource (shader, 1, &strPointer, NULL);
glCompileShader (shader) ;
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int compiled;
glGetShaderiv ( shader, GL_COMPILE_STATUS, &compiled);
if ( !'compiled )

printf ("Compiling %d failed!\n", shaderType );

int maxLength;
glGetShaderiv ( shaderType, GL_INFO_LOG_LENGTH, &maxLength);

// maxLength includes NULL character
infolog = (char ) malloc ( sizeof( char ) * maxLength );
glGetShaderInfolog (vertexShader, maxLength, &maxLength, infolog) ;

return shader;

19.6.2 Drawing a Triangle

As a very simple example, we write a class called Triangle, which extends the classs Shader to
create shaders to draw a triangle with a specified color. For simplicity, the shader source codes are
hard-coded in the Triangle class:

class Triangle : public Shader
{

private:
static const string vsCode; // Source code of vertex shader
static const string fsCode ; // Source code of fragment shader
static const int vertexCount = 3;

static const int COORDS_PER_VERTEX = 3;
static const float triangleCoords|[];
static const float color[];
public:
Triangle( int &success );
void draw () ;

}i

const string Triangle::vsCode =
"attribute vecd4 vPosition; \
void main () {
gl_Position = vPosition; \

i

~

const string Triangle::fsCode
"uniform vec4 vColor; \
void main () {
gl_FragColor = vColor; \

Py

~

const float Triangle::triangleCoords[] =
{ // in counterclockwise order:
0.0£, 0.9f, 0.0f, // top vertex
-0.5f, -0.3f, 0.0f, // bottom left
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0.5f, -0.2f, 0.0f // bottom right
}i

// Set color of displaying object
// with red, green, blue and alpha (opacity) values
const float Triangle::color[] = {0.89f, 0.6f, 0.4f, 1.0f};

This class makes use of the functions of its parent and provides the source codes to do the
initilization of the shaders in the constructor:

// Create a Triangle object
Triangle::Triangle ( int &success )

{

string xvs, xfs;

vs = (string x) &vsCode;

fs = (string %) &fsCode;

success = createShader ( vs, fs );
if ( !success )

printf ("infolLog: %s\n", infolog );

The draw function of Triangle shown below draws the triangle using the OpenGL command
glDrawArrays. Before calling this command, it must pass the values of the triangle vertices to the
vertex shader and the color values to the fragment shader. We pass the vertex data via the attribute
variable vPosition and use the command glVertexAttribPointer to point to where the vertex data
are located. The color value is passed to the fragment shader via the uniform variable vColor. The
command glUniform4fv points to the location of the color data. The function glUniform has 1 to
4 dimensional forms and a vector (v) version, and we can use it to set scalar or vector values.

void Triangle::draw()

{

// get handle to vertex shader’s attribute variable vPosition
int positionHandle= glGetAttribLocation (program, "vPosition");

// Enable a handle to the triangle vertices
glEnableVertexAttribArray ( positionHandle );

// Prepare the triangle coordinate data
glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, triangleCoords);

// get handle to fragment shader’s uniform variable vColor
int colorHandle = glGetUniformLocation (program, "vColor");
if ( colorHandle == -1 )

printf ("No such uniform named vColor\n");

// Set color for drawing the triangle
glUniformd4fv ( colorHandle, 1, color );

// Draw the triangle
glDrawArrays ( GL_TRIANGLES , 0, vertexCount);
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// Disable vertex array
glDisableVertexAttribArray (positionHandle) ;

int loadStatus = 0
Triangle xtriangle
triangle->draw();
triangle->cleanUp();
glutSwapBuffers();
glFlush();

I~

new Triangle( loadStatus );

The Triangle constructor calls the functions of its parent Shader to do all the initialization of the
shaders and returns the status of loading the shaders via the reference variable loadStatus, with a
value of 1 meaning successful loading and 0 meaning failure. The shader source codes are hard-
coded in the Triangle class. The draw method passes the necessary information to the shaders to
render a triangle. The example here has not setup any world window or viewing volume; default
values are used. In the vertex shader, we have not applied any transformation operation to the
vertex values. Figure 19-6 below shows the output of this code.

Figure 19-6 Output of Triangle Shader

19.6.2 Temperature Shader

Our next example is a temperature shader where we use colors to represent temperatures with
red meaning hot and blue meaning cold. We draw a square with temperature gradient where a
warm temperature is a mixture of red and blue. We can imagine that the square is a metallic sheet
with each corner connected to a heat or a cooling source. We can express smoothly the surface
temperature as a mixture of red and blue. In the example, we assume that the lowest temperature
is 0 and the highest is 50.

To accomplish this we pass the temperature value at each square vertex via an attribute array
variable called vertexTemp to the vertex shader. The shader normalizes it to a value between 0 and
1 before passing the value to the fragment shader via the varying variable femperature. We create
a class called Square, which is similar to the Triangle class above, to load the shaders and pass
values to them:

class Square : public Shader

{

private:
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Temperature Shader

static const string vsCode; //Source code of vertex shader
static const string fsCode ; //Source code of fragment shader
static const int vertexCount = 4;

static const int COORDS_PER_VERTEX = 3;

static const float squareCoordsl|];

static const float vertexTempl[];
public:

Square ( int &success );

void draw () ;

In this example, instead of hard-coding the shader source codes in the class, we read them from
external files. So we add a function called readShaderFile() to the parent class Shader; it loads a
shader source code from a file to a character array:

int Shader::readShaderFile (char xfileName, char *xshader)

{

// Allocate memory to hold the source of our shaders.
FILE *fp;
int count, pos, shaderSize;

fp = fopen( fileName, "r");
if ( 'fp )
return 0;

pos = (int) ftell ( fp );

fseek ( fp, 0, SEEK_END ); //move to end
shaderSize = ( int ) ftell ( fp ) - pos; //calculates file size
fseek ( fp, 0, SEEK_SET ); //rewind to beginning

if ( shaderSize <= 0 ) {
printf ("Shader %s empty\n", fileName);
return 0;

}

// allocate memory

*shader = (char ) malloc( shaderSize + 1);

if ( *shader == NULL )
printf ("memory allocation error\n");
// Read the source code
count = (int) fread(xshader, 1, shaderSize, fp);
(*shader) [count] = "\0’;

if (ferror (fp))
count = 0;

fclose (fp);

return 1;

In this function, fileName is the input parameter holding the file name of the shader source and
shader is the output parameter pointing to the address of a character array that stores the shader
source. The function simply opens the file, calculating its length, allocating memory for the shader,
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and reading the source code into the allocated character array. The function returns 1 for success
and O for failure.

We can load the shaders and peform the initialization in the constructor of Square, assuming
that the source codes of the vertex shader and the fragment shader are saved in the files temp.vert
and temp.frag respectively:

// Create a Square object
Square::Square ( int &success )
{

string xvs, xfs;

char xvsSource, xfsSource;

// Read shader source code.
readShaderFile( (char x) "temp.vert", &vsSource) ;
readShaderFile ( (char «)"temp.frag", &fsSource) ;
vs = new string ( vsSource );
fs = new string ( fsSource );
success = createShader ( vs, fs );
if ( !success ) {
printf ("infoLog: %s\n", infolog );
return;
}
delete vs; delete fs;
delete vsSource; delete fsSource;

On the other hand, we hard-code the coordinates of the square vertices and their associated
temperatures in the class Square. These data are passed to the vertex shader in the draw() function,
where the command gl VertexAttribPointer is used to point to the data array:

// Coordinates of a square
const float Square::squareCoords[] =
{ // in counterclockwise order:
-0.8f, 0.8f, 0.0f, // top left vertex
-0.8f, -0.8f, 0.0f, // bottom left
0.8f, -0.8f, 0.0f, // bottom right
0.8£, 0.8f, 0.0f // upper right
}i

// Temperature at each vertex

const float Square::vertexTemp[] = {
5.0f, // v0 cold (top left)
12.0f, // vl cool
22.0f, // v2 warm
40.0f // v3 hot (upper right)

}i

void Square::draw ()

{

// get handle to vertex shader’s attribute variable vPosition
int positionHandle= glGetAttribLocation (program, "vPosition");
int vertexTempHandle= glGetAttribLocation (program, "vertexTemp") ;
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// Enable a handle to the square vertices
glEnableVertexAttribArray ( positionHandle );

// Prepare the square coordinate data

glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, squareCoords);

glEnableVertexAttribArray ( positionHandle );

// Enable a handle to the temperatures at vertices
glEnableVertexAttribArray ( vertexTempHandle );
// Pointing to the vertex temperatures
glVertexAttribPointer (vertexTempHandle, 1,

GL_FLOAT, false, 0, vertexTemp);

GLchar names[][20] = { "coldColor", "hotColor", "tempRange" };
GLint handles([10];
for ( int 1 = 0; 1 < 3; ++1 ) {

handles[i] = glGetUniformLocation (program, names[i]);

if (handles[i] == -1)

printf ("No such uniform named %$s\n", names[i]);

// set uniform values

glUniform3f (handles[0], 0.0, 0.0, 1); //cold color
glUniform3f (handles[1], 1.0, 0.0, 0.0); //hot color
glUniformlf (handles[2], 50.0); //temperature range

// Draw the square
glDrawArrays ( GL_QUADS, 0, vertexCount);

// Disable vertex array
glDisableVertexAttribArray (positionHandle) ;
glDisableVertexAttribArray (vertexTempHandle) ;

In the draw function the integer handles positionHandle and vertexTempHandle point to the at-
tribute variables, vPosition, a vecd, and vertexTemp, a float, defined in the vertex shader. Through
these handles, the application assigns data to vPosition that specifies the vertex coordinates and to
vertexTemp that specifies the temperature at each vertex. The command glVertexAttribPointer()
tells the handle where the actual data are located, and in our case, the vertex data and the temper-
ature data are hard-coded in the arrays squareCoords and vertexTemp respectively. The command
glDrawArrays sends these data to the shader on a per-vertex basis. The draw function declares
another 3 integer handles to pass the color data representing hot and cold temperatures to the frag-
ment shader and the temperature range to the vertex shader. The commands glUniform*() send
the data.

The vertex and fragment shaders, which are saved in the files temp.vert and temp.frag respec-
tively, are relatively simple:

// temp.vert (temperature vertex shader)
attribute vec4 vPosition;

attribute float vertexTemp;

uniform float tempRange;

varying float temperature;
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void main (void)

{
temperature = ( vertexTemp - 0.0 ) / tempRange;
gl_Position = vPosition;

// temp.frag (temperature fragment shader)
uniform vec3 coldColor;

uniform vec3 hotColor;

varying float temperature;

void main ()

{
vec3 color = mix ( coldColor, hotColor, temperature );
gl_FragColor = vec4 ( color, 1 );

The vertex shader and the fragment shader communicate via the varying varialbe femperature,
which is a float. The vertex shader calculates temperature from uniform variables vertexTemp and
tempRange, whose values are obtained from the application or from interpolation. The temperature
value, which has a value ranges from 0.0 to 1.0 is passed to the fragment shader to evaluate a color
using the glsl mix function that interpolates a new color from two provided colors, colorl and
color2, and a fraction f:

mix(colorl, color2, f) = colorl x (1 — f) + color2 x f

When we execute this program, we will see a color square like the one shown in Figure 19-
7 below. Again, in this example no world window and viewing volume has been setup and no
transformation matrix operation has been applied to the vertex values.

Figure 19-7 Output of Temperature Shader

19.6.3 Drawing a Wireframe Tetrahedron

A tetrahedron is composed of four triangular faces, three of which meet at each vertex and thus it
has four vertices. It may be the simplest kind of 3D objects.

A tetrahedron can be considered as a pyramid, which is a polyhedron with a flat polygon base
and triangular faces connecting the base to a common point. A tetrahedron simply has a triangular
base, so it is also known as a triangular pyramid.
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A regular tetrahedron is one in which all four faces are equilateral triangles. The vertices
coordinates of a regular tetrahedron with edge length 2 centered at the origin are

-1 -1 1 1
\/i)’ ( 1707 \/5)7 (07 ]‘? \/5)7 (0’ 17 \/i) (19‘1)
The following example illustrates the basic techniques of drawing 3D objects with glsl. We will
setup the viewing and projection paramters in the application and the vertex shader will multiply
the model-view projection matrix to the vertex coordinates.

In the application, the class Tetrahedron, which is similar to classes Triangle and Square above,
defines the coordinates of the four tetrahedron vertices and the indices of the four faces:

(1,0,

const float Tetrahedron::tetraCoords[] =
{

i 0, -0.707£, -1, 0, -0.707f%f,

0, 1, 0.707f, 0, -1, 0.707f
bi

const int nIndices = 8; // number of indices
// Order of indices of drawing the tetrahedron
const short indices[nIndices] = {0, 1, 2, 0, 3, 1, 2, 3};

It passes the drawing color to the fragment shader through a uniform variable named vColor.
We set the drawing color to cyan and use line stripes to draw the 3D tetrahedron as a wireframe.
So the draw function can be implemented as:

void Tetrahedron: :draw ()

{

// get handle to vertex shader’s attribute variable vPosition
int positionHandle= glGetAttribLocation (program, "vPosition");

// Enable a handle to the tetrahedron vertices

glEnableVertexAttribArray ( positionHandle );

// Prepare the tetrahedron coordinate data

glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, tetraCoords);

int colorHandle = glGetUniformLocation (program, "vColor");
if (colorHandle == -1)
printf ("No such uniform named %$s\n", "vColor" );

// set drawing color

glUniform4f ( colorHandle, 0.0, 1.0, 1.0, 1.0 );

glLineWidth (5);

// Draw the tetrahedron

glDrawElements ( GL_LINE_STRIP, nIndices,
GL_UNSIGNED_SHORT, indices);

// Disable vertex array
glDisableVertexAttribArray (positionHandle) ;

In this example, the application defines the projection and model-view transformations; we can
implement the reshape function of the renderer as:
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static void reshape (int width, int height)
{
glViewport (0, 0, width, height);
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;
glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 50.0);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
gluLookAt (0.0, 0.0, 6.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// tetra.vert : tetrahedron vertex shader
attribute vecd4d vPosition;

void main (void)

{

gl_Position = gl_ModelViewProjectionMatrix % vPosition;

// tetra.frag : tetrahedron fragment shader
uniform vecd4 vColor;
void main ()

{
gl_FragColor = vColor;

The built-in glsl variable gl ModelViewProjectionMatrix is the product of the projection ma-
trix and the model-view matrix, and is multiplied to the vertex coordindates for every vertex. The
shader statement is equivalent to

gl_Position=gl_ProjectionMatrixxgl_ModelViewMatrixxvPosition;

In principle we should get the same transformation as the fixed-pipeline architecture. However,
in practice the order of transforming the vertices in our shader may differ from that of the fixed
functionality due to the optimization in a graphic card, that special built-in functions may take ad-
vantage of the optimization to speed up calculations. Also, rounding errors may generate different
results for different methods of calculations. Therefore, glsl provides a function that guarantees
the result to be the same as when using the fixed functionality:

vec4 ftransform ( void );

This function does the matrix calculations in the order as that of the fixed functionality and pro-
duces the same results.

Alternatively, we can pass in the transformation matrices from the application as mat4 uniform
variables rather than using the built-in variables.

The color of drawing is set by the variable vColor in the fragment shader. Note that if we
declare a variable in a shader and do not actually use it in the shader program, the variable will
be removed in the compilation process for optimiazation purposes. Consequently, the application
will not be able to find the variable even though it has been declared in the shader.

Figure 19-8 below shows the output of this program.
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Figure 19-8 Output of Tetrahedron Shader

19.6.4 Drawing a Color Solid Tetrahedron

In this example, we draw a solid 3D tetrahedron, specifying the data inside a class named Tetrahe-
drons. We draw each face independently with a different color. Therefore, we have to specify the
vertex indices of each face and the associated colors like the following:

// Coordinates of a tetrahedron
const float Tetrahedrons::tetraCoords[] =

1.0f£, 0.0f, -0.707f, // vertex vO
-1.0f, 0.0f, -0.707f£, // vl
0.0f, 1.0f, 0.707f£, // v2
0.0f, -1.0£, 0.707f // v3
}i

// draw indices for each face

const short Tetrahedrons::drawOrders[][3] = {
{o, 1, 23, ({0, 2, 3}, {0, 3, 1}, {3, 2, 1}

}i

// color for each face

const float Tetrahedrons::colors/(]
{1.0f, 0.0£, 0.0f, 1.0f}, // 0
{0.0f, 1.0f, 0.0f, 1.0f}, // 0,
{0.0f, 0.0£, 1.0f, 1.0f}, // 0
{1.0f, 1.0f£, 0.0f, 1.0f} // 3

}i

As a demonstration of the alternative method of transforming vertices, we pass in a 4 x 4
transformation matrix from the application to the vertex shader instead of using the built-in variable
gl_ModelViewProjectionMatrix like what we did above.

In this example, we rotate the tetrahedron about an axis by dragging the mouse and perform
our own matrix operations. Alternatively, one may use the OpenGL Mathematics (glm), which is
a C++ mathematics library for 3D software based on the glsl specification to do matrix operations.
The package can be downloaded from:

http://sourceforge.net/projects/ogl-math/

But for simplicity, we have not used this math library in our examples. We calculate the composite
transformation matrix in our display call-back function:
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Tetrahedrons =*tetrahedron;

float mvMatrix([4][4]; //model-view matrix
float mvpMatrix[4][4]; //model-view projection matrix
float angle = 0; //rotation angle

void display (void)

{
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor( 1.0, 1.0, 1.0, 1.0 ); //set white background
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
gluLookAt (0.0, 0.0, 6.3, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glRotatef ( angle, 1.0f, 0.2f, 0.2f );
// retrieve model-view matrix
glGetFloatv (GL_MODELVIEW_MATRIX, &mvMatrix([0][0]);

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity () ;

glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 50.0);

// multiply projection matrix by model-view matrix
glMultMatrixf ( &mvMatrix[0][0] );

// retrieve model-view projection matrix
glGetFloatv (GL_PROJECTION_MATRIX, &mvpMatrix([0][0]);
// pass transformation matrix to vertex shader
tetrahedron->draw ( mvpMatrix );
tetrahedron->cleanUp () ;

glutSwapBuffers();

glFlush{();

The code uses the command glGetFloatv() to obtain the 4 x4 model-view matrix mvMatrix. It then
multiplies it to the projection matrix, and the product is retrieved into the model-view projection
matrix mvpMatrix, which is an input parameter to the draw() function of the class Tetrahedrons,
where it passes it to the vertex shader. The code also rotates the object by angle degrees around
the axis (1.0,0.2,0.2). The rotation angle is changed by the mouse-movement callback function,
movedMouse():

const int screenWidth = 200;
const int screenHeight = 200;
float previousX=0, previousY¥=0, dx = 0, dy = 0;
void movedMouse (int mouseX, int mouseY)
{
dx = mouseX - previousX;
dy = mouseY - previousY;
// reverse direction of rotation above the mid-line
if (mouseY > screenHeight / 2)
dx = dx ~ -1 ;
// reverse direction of rotation to left of the mid-line
if (mouseX < screenWidth / 2)
dy = dy » -1 ;
angle = angle + (dx + dy) / 2; //scale factor of 2
previousX = mouseX;
previousY = mouseY;
glutPostRedisplay () ;
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The following is the draw() function with some non-significant code omitted. The main thing new
here is that it passes the 4 x 4 model-view projection matrix to the vertex shader via the uniform
variable mvpMatrix declared in the vertex shader.

void Tetrahedrons::draw( float mvpMatrix[4][4] )
{
int positionHandle = glGetAttribLocation (program, "vPosition");
glEnableVertexAttribArray ( positionHandle );
glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, tetraCoords);

int mvpMatrixHandle = glGetUniformLocation (program, "mvpMatrix");
glUniformMatrix4fv (mvpMatrixHandle, 1, GL_FALSE, &mvpMatrix[O0][0] );
int colorHandle = glGetUniformLocation (program, "vColor");

glEnable (GL_CULL_FACE);
glCullFace (GL_BACK) ;
for ( int 1 = 0; i < N_FACES; i++ ) {
glUniform4fv (colorHandle, 1, &colors[i][0]);
glDrawElements ( GL_TRIANGLES, 3,
GL_UNSIGNED_SHORT, &drawOrders[i][0]);

}

The following is the vertex shader, which mulitplies the model-view projection matrix, a mat4
obtained from the application to the vertex coordinates:

// tetra.vert : tetrahedron vertex shader
attribute vec4d vPosition;
uniform mat4 mvpMatrix;
void main (void) {
gl_Position = mvpMatrix = vPosition;

}

The fragment shader does nothing special. It simply sets the color at a fragment to the correspond-
ing vertex color obtained from the application:

// tetra.frag : tetrahedron fragment shader
uniform vecd4 vColor;
void main () {

gl_FragColor = vColor;

Figure 19-9 below shows a few sample outputs of this program when the mouse is dragged to
rotate the tetrahedron.

() (b) (©
Figure 19-9 Sample Outputs Color Tetrahedron Shader
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19.7 Drawing Spheres

19.7.1 Spherical Coordinates

We can use a mesh of triangles to approximate a spherical surface. We have to define the vertices
coordinates of each triangle and every vertex is on the surface of the sphere. In practice, it is
easier to calculate the position of a point on a sphere using spherical coordinates, where a point is
specified by three numbers: the radial distance r of that point from a fixed origin, its polar angle
0 (also called inclination) measured from a fixed zenith direction, and the azimuth angle ¢ of its
orthogonal projection on a reference plane that passes through the origin as shown in Figure 19-10.
So in spherical coordinates, a point is defined by (r, 8, ¢) with some restrictions:

r>0
0° <0 <180° (19.2)
0° < ¢ < 360°

Cartesian coordinates of a point (z, y, z) can be calculated from the spherical coordinates, (radius

r, inclination 6, azimuth ¢), where r € [0, 00), 8 € [0, 7], ¢ € [0, 27), by:

x =7 sin § cos ¢
y = r sin 6 sin ¢ (19.3)
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Figure 19-10 Spherical Coordinate System
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Conversely, the spherical coordinates can be obtained from Cartesean coordinates by:

r= /2% 4+ y2 + 22

6= cos ! (%) (19.4)
¢ = tan ! (%)

19.7.2 Rendering a Wireframe Sphere

To render a sphere centered at the origin, we can divide the sphere into slices around the z-axis
(similar to lines of longitude), and stacks along the z-axis (similar to lines of latitude). We simply
draw the slices and stacks independently, which will form a sphere. Each slice or stack is formed
by line segments joining points together. Conversely, each point is an intersection of a slice and a
stack.

Suppose we want to divide the sphere into m stacks and 7 slices. Since 0 < § < T, the angle
between two stacks is 7/(m — 1). On the other hand, 0 < ¢ < 27, the angle between two slices
is 27 /n as the angle 27 is not included. That is,

50 = T

—1
72’; (19.5)
Figure 9-11 below shows a portion of two slices and two stacks, and their intersection points.
J J+1 )
m stacks, n slices
- Indices
[ a c a:jxm+41
b:jxm+i+1
| \ c:(J+1)xm+i
\ \ d:(j+1) xm+i+1
i l
] ]
] ]
] ]
. } #
1+ 1 b | d |

Quad abdc = Aabe + Acbd
Figure 9 - 11. Spherical Surface Formed by Stacks and Slices

Our task is to calculate the intersection points. Suppose we calculate the points along a slice
starting from ¢ = 0, spanning 6 from 0 to 7, and then incrementing ¢ to calculate the next slice.
We apply equation (19.3) to calculate the x, y, and z coordinates of each point. For convenience,
we define a class called XYZ that contains the x, y, z coordinates of a point, and save the points in
a C++ Standard Template Library (STL) class vector called vertices. Suppose we have declared a
class called Sphere, which is similar to the Tetrahedron class discussed above. The following code,
where createSphere can be a member function of the class Sphere, shows an implementation of
such a task, assuming that r is the radius of the sphere:
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class XYZ{
public:

float x, vy, z;
}i

void Sphere::createSphere ( float r, int nSlices, int nStacks )
{

double phi, theta;

XYZ *p = new XYZ();

const double PI = 3.1415926;

const double TWOPI = 2 % PI;

for ( int j = 0; J < nSlices; Jj++ ) {
phi = j = TWOPI / nSlices;
for ( int i = 0; i < nStacks; i++ ) {
theta = i » PI / (nStacks-1); //0 to pi
p—>x = r % (float ( sin ( theta ) * cos ( phi ));
p—>y = r = (float) ( sin ( theta ) » sin ( phi ));

)
)
p—>z = r % (float) cos ( theta );
vertices.push_back ( *p );

}

In the code, the push_back() function of vector simply inserts an item into the vector object at its
back. So the vector vertices contains the coordinates of all the points on the sphere.

Now we have obtained all the intersection points. The remaining task is to define a draw order
list that tells us how to connect the points. We use a short array, named drawOrderw to hold the
indices of the vertices in the order we want to connect them. Suppose we first draw the slices. The
following code shows how to calculate the indices for the points of the slices:

int k = 0;
for ( int j = 0; 3 < n; J++ ) {
for ( int i = 0; i < m-1; i++ ) {
drawOrderw [k++] (short) (j = m + 1);
drawOrderw[k++] = (short) ( j* m + i + 1 );

The two indices (j * m + ) and (j * m + ¢ + 1) define two points of a line segment of a slice.
Each slice is composed of m — 1 line segments. The following code shows the calculations for the
stacks:

for ( int 1 = 1; 1 <m - 1; i++4+) {
for ( int j = 0; J < n; J++){
drawOrderw[k++] = (short) (j  m + 1i);
if ( J == n - 1) //wrap around: j + 1 -=> 0
drawOrderw[k++] = (short) ( 1i);
else
drawOrderw[k++] = (short) ((j+1)»m + 1i);

Each pair of indices defines two end points of a line segment of a stack. When j equals n — 1,
the next point wraps around so that the last point of the stack joins its first point to form a full
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circle. So each stack is composed of n segments. Also we do not need to draw the poles, and there
are only m — 2 stacks. Therefore, the total number of indices in drawOrderw is

2xnx(m=—1)42x(m—-2)xn=4xmxn—06xXn

So we can calculate the drawOrderw array size and allocate the approximate memory for the array
before using it:

short *drawOrderw;
int drawOrderwSize = 4  m » n — 6 * n;
drawOrderw = new short[drawOrderwSize];

In order to use the OpenGL command glDrawElements, we put all the vertex coordinates in a
float array called sphereCoords:

int nVertices = vertices.size();
float xsphereCoords = new float[3xnVertices];
int k = 0;
for ( int i = 0; 1 < nVertices; i++ ) {
XYZ v = vertices[i];
sphereCoords [k++] = v.x;
sphereCoords [k++] = v.y;

sphereCoords [k++] V.Z;

}

(The tasks of calculating the drawOrderw and sphereCoords arrays can be done in the constructor
of Sphere, after calling the member function createSphere.)

To draw the sphere, we simply join these points together. When we draw all the slices and
stacks, we get a wireframe sphere:

void Sphere::draw( float mvpMatrix[4][4] )
{
int positionHandle= glGetAttribLocation (program, "vPosition");
glEnableVertexAttribArray ( positionHandle );
glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, sphereCoords);
int mvpMatrixHandle = glGetUniformLocation (program, "mvpMatrix");
glUniformMatrix4fv (mvpMatrixHandle, 1, GL_FALSE, &mvpMatrix[O][0] );

Since the first index in drawOrderw references the point that is the north pole of the sphere, we
can draw the pole using the statement:

glDrawElements (GL_POINTS, 1, GL_UNSIGNED_SHORT, drawOrderw);
The shaders are very simple and similar to those described in previous examples:

// sphere.vert: Source code of vertex shader
attribute vec4 vPosition;

uniform mat4 mvpMatrix;

void main (void)

{

gl_Position = mvpMatrix * vPosition;
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// sphere.frag: Source code of fragment shader
uniform vecd4 vColor;
void main ()

{
gl_FragColor = vColor;

}

Suppose we set the number of slices to 24 and the number of stacks to 16. When we run the
program, we will see a wireframe sphere like the one shown in Figure 9-12 below. The point near
the top of the sphere is its north pole. It has been rotated by the mouse dragging movement.

Figure 9-12 A Rendered Wireframe Sphere

19.7.3 Rendering a Color Solid Sphere

Rendering a color solid sphere is similar to rendering a color solid tetrahedron except that we have
to calculate the vertices of the triangle mesh. We have already learned how to decompose a sphere
into slices and stacks in the previous section. Suppose we have saved all the vertices in the vector
variable vertices as we did in the previous example. The shaders are the same as those in the
previous example, which are very simple.

As shown in Figure 9-11, the intersection points of two latitudes and two longitudes form a
quadrilateral, which can be decomposed into two triangles. Since all the vertices coordinates have
been calculated, we just need to find out the order of drawing them in the form of triangles.

As shown in the figure, to draw the quad abcd, we first draw the triangle abc and then draw
the other triangle cbd, both in a counter-clockwise direction. That means the drawing order of the
vertices is a, b, ¢, ¢, b, d. The following code shows the implementation of this procedure:

// 2n(m-1) slices + 2(m—-2)n stacks

int nTriangles = 2 « n % (m — 1); //number of triangles
short xdrawOrders = new short[3*nTriangles];

for ( int j = 0; J < n; J++ )
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for ( int 1 = 0; i < m-1; 1i++ ) {
short j1 = (short) (j + 1);
if ((J==n-1) 31 = 0; //wrap around
short ia = (short)( j * m + 1 ) ;
short ib = (short)( j * m + 1 + 1);
short ic = (short) (j1 » m + 1 );
short id = (short) ( jlL » m + 1 + 1 );
drawOrders[k++] = ia;
drawOrders [k++] = ib;
drawOrders[k++] = ic;
drawOrders [k++] = ic;
drawOrders[k++] = ib;
drawOrders[k++] = id;

}

Suppose we just use the four colors, red, green, blue, and yellow to draw the whole sphere,
alternating the colors between adjacent triangles. We can define a float array to hold the four
colors:

const float Spheres::colors[][nColors] = {
{1.0f, 0.0£, 0.0f, 1.0f}, // red

{0.0£, 1.0£f, 0.0f, 1.0f}, // green
{0.0£, 0.0£, 1.0f, 1.0f}, // blue
{1.0£, 1.0f, 0.0f, 1.0f} // yellow

}i

To draw the sphere, we simply draw all the triangles, each of which is defined by three vertices
and a color. In this example, only four colors, red, green, blue, and yellow have been used for
coloring the triangles. The following is the draw function of the class Sphere that draws a color
solid sphere composed of triangles; the user can rotate the sphere by dragging the mouse:

void Spheres::draw( float mvpMatrix[4][4] )
{
int positionHandle= glGetAttribLocation (program, "vPosition");
glEnableVertexAttribArray ( positionHandle );
glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, sphereCoords);

int mvpMatrixHandle = glGetUniformLocation (program, "mvpMatrix") ;
glUniformMatrix4fv (mvpMatrixHandle, 1, GL_FALSE, &mvpMatrix[0][0]);

int colorHandle = glGetUniformLocation (program, "vColor");
for ( int i = 0; i1 < nTriangles; i++ ) {
int j =1 % 4;

14
glUniformd4fv (colorHandle, 1, colors([jl);

glDrawElements ( GL_TRIANGLES, 3,
GL_UNSIGNED_SHORT, (drawOrders + ix*3 ));

}
glDisableVertexAttribArray (positionHandle) ;

}

In the code, the array pointer argument of the OpenGL function gIDrawElements is
drawOrders + i * 3
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which points to the three indices of the vertices of the i-th triangle to be drawn. For instance, if the
first index value is j (i.e. j = *(drawOrders+i*3)), then the coordinates of the triangle vertices are
given by
sphereCoords[j], sphereCoords[j+1], sphereCoords[j+2]

These values are passed to the vertex shader via the attribute variable vPosition.

The vertex and fragment shaders are the same as those presented in the previous section, Ren-
dering a Wireframe Sphere. When we run the program, we will see an output similar to the one
shown in Figure 19-13 below, where the sphere has been rotated by the mouse.

Figure 19-13 A Rendered Color Solid Sphere

19.7.4 Lighting a Sphere

Lighting is an important feature in graphics for making a scene appear more realistic and more
understandable. It provides crucial visual cues about the curvature and orientation of surfaces, and
helps viewers perceive a graphics scene having three-dimensionality. Using the sphere we have
constructed in previous sections, we discuss briefly here how to add lighting effect to it.

To create lighting effect that looks realistic, we need to first design a lighting model. In graphics,
however, such a lighting model does not need to follow physical laws though the laws can be used
as guidelines. The model is usually designed empirically. In our discussion, we more or less follow
the simple and popular Phong lighting model that we discussed in Chapter 7 to create lighting
effect. In the model we only consider the effects of a light source shining directly on a surface
and then being reflected directly to the viewpoint; second bounces are ignored. Such a model is
referred to as a local lighting model, which only considers the light property and direction, the
viewer’s position, and the object material properties. It considers only the first bounce of the light
ray but ignores any secondary reflections, which are light rays that are reflected for more than once
by surfaces before reaching the viewpoint. Nor does a basic local model consider shadows created
by light. In the model, we consider the following features:

1. All light sources are modeled as point light sources.
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2. Light is composed of red (R), green (G), and blue (B) colors.

3. Light reflection intensities can be calculated independently using the principle of superposi-
tion for each light source and for each of the 3 color components (R, G, B). Therefore, we
describe a source through a three-component intensity or illumination vector

e e (19.6)
B

Each of the components of I in (19.6) is the intensity of the independent red, green, and blue
components.

4. There are three distinct kinds of light or illumination that contribute to the computation of
the final illumination of an object:

e Ambient Light: light that arrives equally from all directions. We use this to model
the kind of light that has been scattered so much by its environment that we cannot tell
its original source direction. Therefore, ambient light shines uniformly on a surface
regardless of its orientation. The position of an ambient light source is meaningless.

o Diffuse Light: light from a point source that will be reflected diffusely. We use this to
model the kind of light that is reflected evenly in all directions away from the surface.
(Of course, in reality this depends on the surface, not the light itself. As we mentioned
earlier, this model is not based on real physics but on graphical experience.)

e Specular Light: light from a point source that will be reflected specularly. We use this
to model the kind of light that is reflected in a mirror-like fashion, the way that a light
ray reflected from a shinny surface.

5. The model also assigns each surface material properties, which can be one of the four kinds:

e Materials with ambient reflection properties reflect ambient light.
e Materials with diffuse reflection properties reflect diffuse light.
e Materials with specular reflection properties reflect specular light.

In the model, ambient light only interacts with materials that possess ambient property; specular
and diffuse light only interact with specular and diffuse materials respectively.

Figure 19-14 below shows the vectors that are needed to calculate the illumination at a point.
In the figure, the labels vPosition, lightPosition, and eyePosition denote points at the vertex, the
light source, and the viewing position respectively. The labels L, N, R, and V are vectors derived
from these points (recall that the difference between two points is a vector), representing the light
vector, the normal, the reflection vector, and the viewing vector respectively. The reflection vector
R is the direction along which a light from L will be reflected if the the surface at the point is
mirror-like. Assuming that the center of the sphere is at the origin O = (0,0, 0), some of them
can be expressed as

light vector L = light Position — vPosition
normal N = vPosition — O (19.7)
view vector V= eyePosition — vPosition

We can normalize a vector by dividing it by its magnitude:

R v = % (19.8)

L
=35, n= , V=157,
IL| IN]| VI
One can easily show that the normalized reflection vector r can be calculated from 1 and n by the
formula,
r=2(n-ln-1 (19.9)
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lightPosition

L

vPosition

Oe he
eyePosition

Figure 19-14 Lighting Vectors

Suppose '™ denotes the incident illumination from the light source in the direction 1. The am-
bient, diffuse, and specular illumination on the point vPosition can be calculated according to the
following formulas.

The ambient illumination is given by

I, = coI™™ (19.10)

where I" is the incident ambient light intensity and c, is a constant called the ambient reflectivity
coefficient.
The diffuse illumination is

Iy =cqIl"-n (19.11)

where 1- n = r - n, I/ is the incident diffuse light intensity and cq is a constant called the diffuse
reflectivity coefficient.
The specular illumination can be calculated by

I, =cdm™(r-v)f (19.12)

where c; is a constant called the specular reflectivity coefficient and the exponent f is a value that
can be adjusted empirically on an ad hoc basis to achieve desired lighting effect. The exponent
fis > 0, and values in the range 50 to 100 are typically used for shinny surfaces. The larger the
exponent factor f, the narrower the beam of specularly reflected light becomes.

The total illumination is the sum of all the above components:

I =1 at I d+ I s

zcafé"—kcdffl”(bn)—|—c(‘,.I;"(r-v)f (1913)
This model can be easily implemented in the glsl shader language. In our example, where the
illuminated object is a sphere, the shader code is further simplified. The positions of the light
source, the vertex, and the eye position (viewing point) are passed from the the application to the
vertex shader as uniform variables. The vertex shader calculates the vectors L, N, and V from the
positions and pass them to the fragment shader as varying variables:
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// Source code of vertex shader

uniform mat4 mvpMatrix;

attribute vec4 vPosition;

uniform vecd4 eyePosition;

uniform vecd4 lightPosition;

varying vec3 N; //normal direction
varying vec3 L; //light source direction
varying vec3 V; //view vector

void main () {
gl_Position = mvpMatrix % vPosition;
N = vPosition.xyz; //normal of a point on sphere
L = lightPosition.xyz - vPosition.xyz;
V = eyePosition.xyz - vPosition.xyz;

}

In the code, we have used the swizzling operator to access the x,y, and z components of the
vecd and vec3 variables. In glsl, a swizzling operator is a variant of the C selection operator (.). It
allows us to read and write multiple components of the matrix and vector variables. For example,

N = vPosition.xyz;
is to assign the x, y, and z components of vPosition to the corresponding components of N. (We
may even use it to swap elements like a.xy = a.yx.)

The fragment shader obtains the vectors L, N, and V from the vertex shader, normalizes them,
and calculates the reflection vector r. It then uses formulas (19.10) to (19.12) to calculate the illu-
mination at the vertex. The following is the fragment shader code that calculates the illumination
at each pixel:

// Source code of fragment shader

varying vec3 N;

varying vec3 L;

varying vec3 V;

uniform vec4 lightAmbient;

uniform vec4 lightDiffuse;

uniform vecd4 lightSpecular;

//in this example, material color same for ambient, diffuse, specular
uniform vecd4 materialColor;

uniform float shininess;

void main () {
vec3 norm = normalize (N);
vec3 lightv = normalize (L) ;
vec3 viewv = normalize (V);
// diffuse coefficient
float Kd = max (0.0, dot(lightv, norm));

// calculating specular coefficient

// consider only specular light in same direction as normal
float cs;

if (dot (lightv, norm)>= 0.0) cs =1.0;

else cs = 0.0;
//reflection vector
vec3 r = 2.0 x dot (norm, lightv) » norm - lightv;

float Ks = pow(max (0.0, dot(r, viewv)), shininess);
vecd4 ambient = materialColor * lightAmbient;

vecd specular = cs * Ks » materialColor xlightSpecular;
vecd diffuse = Kd » materialColor = lightDiffuse;
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gl_FragColor = ambient + diffuse + specular;

One can modify the code or juggle with it to obtain various lighting effects empirically.

Similar to previous examples, the OpenGL application has to provide the actual values of the
uniform and attribute parameters. The sphere is constructed in the same way that we did in
the previous example. However, we do not need to pass in the colors for each triangle as the
appearance of the sphere is now determined by its material color and the light colors, and the color
at each pixel is calculated by the fragment shader using the lighting model. Suppose we call the
class of the drawn sphere Spherel. We define the light and material properties as follows:

const float Spherel::eyePos[] = {0, 0, 6.3, 1};

const float Spherel::lightPos([] = {5, 10, 5, 1};

const float Spherel::lightAmbi[] = {0.1, O 0.1, 1}%};
const float Spherel::1lightDiff[] = {1, 0.8, 0.6, 1};
const float Spherel::lightSpec([] = {0.3, 0.2, 0.1, 1};

//material same for ambient, diffuse, and specular
const float Spherel::materialColor[] = {1, 1, 1, 1};

The draw function of the class passes the variable values to the shaders and draws the lit sphere:

void Spherel::draw( float mvpMatrix[4][4] )
{
int positionHandle= glGetAttribLocation (program, "vPosition");
glEnableVertexAttribArray ( positionHandle );
glVertexAttribPointer (positionHandle, COORDS_PER_VERTEX,
GL_FLOAT, false, 0, sphereCoords);
int mvpMatrixHandle = glGetUniformLocation (program, "mvpMatrix");
glUniformMatrix4fv (mvpMatrixHandle, 1, GL_FALSE, émvpMatrix [0] [0]);
glUniformMatrix4fv (mvpMatrixHandle,1l,GL_FALSE, &mvpMatrix[0] [0]);
int eyePosHandle = glGetUniformLocation (program, "eyePosition");
int lightPosHandle= glGetUnlformLocatlon(program,"llghtPOSltlon"),
int lightAmbiHandle=glGetUniformLocation (program, "lightAmbient");
int lightDiffHandle=glGetUniformLocation (program, "lightDiffuse");
int lightSpecHandle=glGetUniformLocation (program,"lightSpecular");
int materialColorHandle=glGetUniformLocation (program, "materialColor");
int shininessHandle = glGetUniformLocation (program, "shininess");
glUniformé4fv (eyePosHandle, 1, eyePos);
glUniformé4fv (lightPosHandle, 1, lightPos);
glUniformé4fv (lightAmbiHandle, 1, lightAmbi);
glUniformd4fv (lightDiffHandle, 1, lightDiff);
glUniform4fv (lightSpecHandle, 1, lightSpec);
glUniformlf (shininessHandle, shininess);
glUniform4fv (materialColorHandle, 1, materialColor);

’

// Draw all triangles
for ( int 1 = 0; 1 < nTriangles; i++ ) {
glDrawElements ( GL_TRIANGLES, 3,
GL_UNSIGNED_SHORT, (drawOrders + ix*3 ));
}
glDisableVertexAttribArray (positionHandle) ;
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Figure 19-15 below shows an output of this application, where the same sphere of Figure 19-13
has been used. Note that in this example, the light source is rotated together with the sphere. That
is, the light source position relative to the sphere is fixed.

Figure 19-15 Example of Rendered Lit Sphere

We can obtain similar outputs if we draw the sphere using the functions glutSolidSphere or glu-
Sphere instead of drawing the triangles (i.e. replacing the for-loop of giDrawElements by glut-
SolidSphere or gluSphere) in the above code. In our example, we calculate the normal of the
object at a vertex in the vertex shader. This could be inconvenient if we need to render several
different kinds of objects using the same shader program. In general we calculate the normal in
the application and specify it using the command glNormal*(); the normal is passed to a shader
via the the built-in variable g/_Normal, which has been transformed by the model-view matrix.
To recover the normal value in the original world coordinates, we need to perform an inverse
transformation on g/_Normal by multiplying it by the ineverse of the model-view matrix, which is
gl_NormalMatrix:

gl_NormalMatrix * gl Normal ;

19.8 Animation

We can animate objects using glsl by changing their vertex positions at specified time intervals,
which means that we need a variable to keep track of time. However, a vertex shader does not
have built-in features to keep track of elapsed time. Therefore, we have to define a time variable in
the OpenGL application, and pass its value to the shader via a uniform variable. We can calculate
the lapsed time of running the program in the idle callback function of the application. We first
consider an example of animating the color sphere presented above.
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19.8.1 Animating a Color Sphere

In this example, we animate the color solid sphere discussed in Section 19.7.3. We need to first
include in the main function of the application the idle function callback command
glutldleFunc (idle );

which sets the global idle callback to be the function idle so that a GLUT program can perform
background processing tasks or continuous animation when window system events are not being
received. The idle callback is continuously called when there are no events. So we make use of
this function to find the elapsed time for animation. We define in the renderer the idle function as
follows (with some minor details omitted):

void idle (void) {
float t = glutGet ( GLUT_ELAPSED_TIME );
sphere->setTime ( t );
glutPostRedisplay () ;

}

In this function, the command glutGet ( GLUT_ELAPSED_TIME) returns the number of
milliseconds since glutInit was called (or first call to glutGet(GLUT_ELAPSED_TIME)). The
function setTime is a new function that we add to the class Spheres discussed above. It passes the
elapsed time to the vertex shader using the function glUniform1f:

void Spheres::setTime ( float t ) {
glUniformlf ( timeHandle, t ); // send the lapsed time to vertex shader

}

The variable timeHandle is a data member of the class Spheres and its value is set in the draw
function:

void Spheres::draw( float mvpMatrix[4][4] ) {

timeHandle = glGetUniformLocation (program, "timeLapsed");

The variable timeLapsed is defined in the vertex shader for animating the sphere:

// sphere.vert

attribute vec4 vPosition;

uniform mat4 mvpMatrix;

uniform float timelapsed; // time in milliseconds
void main (void)

{

float t = timeLapsed / 1000.0; // time t in seconds

float s = sin ( t ); // s varies between -1 and 1

mat4d m = mat4( 1.0 ); // 4 x 4 identity matrix

m= s x m; // try to create scale matrix

m[3]([3] = 1.0; // set last matrix element to 1
// to form a proper scale matrix

gl_Position = m % mvpMatrix x vPosition;

}

The vertex shader simply receives the time parameter timeLapsed value from the application and
divides it by 1000 to convert it to seconds. It then makes use of the sin function to obtain the value
s, which varies between -1 and 1. The s value is multiplied to an identity matrix to obtain the
scaling matrix m, which is multiplied to the model-view projection matrix. Therefore, the vertex
values will change sign and vary. This gives us an animated sphere, which shrinks and expands
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repetitively, and the poles may flip over depending on the orientation of the sphere. The fragment
shader is the same as before. Figure 19-16 below shows a few frames of the output of the program.

(a) (b) () (d)
Figure 19-16 Four Frames of Animated Sphere

Note that the constructor mat4 ( ¢ ) constructs a 4 x 4 array, setting the diagonal elements to the
parameter ¢ and other elements to 0. Thus mat4 ( 1.0 ) creates an identity matrix.

In the above discussion, we have used a default frame rate, which depends on how the OpenGL
library calls the idle function. If we need to animate the sphere at a specified frame rate, we can
declare a float variable called previousTime that records the time at which the most recent frame
was rendered. We render a new frame only if the time lapsed has exceeded the specified period
between two consecutive frames. For example, if we want the frame rate to be 5 frames per second,
the period is 100 ms and we can modify the code of the idle function to:

void idle (void)
{
float t = glutGet ( GLUT_ELAPSED_TIME );
if ( t - previousTime > 100.0 ) {
sphere->setTime ( t );
previousTime = t;
glutPostRedisplay () ;
}
}

In the above example, the center of the sphere is fixed. If we need to move the sphere in space
as a solid object, we can set the translational matrix according to the desired object movements.
Recall that the transformation matrix of translation is given by:

100 d,
T 85?3@ (19.14)
000 1

This matrix translates an object by the values d,, dy, and d in the x,y, and z directions respec-
tively. Therefore, to translate an object, we just need to set the appropriate entries of the trans-
formation matrix m[][] in the vertex shader to the translation values. Since in OpenGL, a matrix
is column-major, where m[i][j] is the element of the i-th column and the j-th row. That is, m[3]
represents column 3 of the matrix. So we set the entries in the following way:

m[3][0] =d,, m[3][1]=d,, m[3][2]=d.
Suppose we want the sphere to move under gravity in the y direction and assume that the sphere’s
initial velocity in the z direction is 0. Then the translation values are given by:

dy = vt

dy = vyt + Lgt? (19.15)
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where v, and v,, are initial velocities in the & and y directions respectively and are constants, and
g is the gravitational constant. If we set all the constants to 1 (i.e. v, = vy, = g = 1), we can
modify our above vertex shader to simulate the motion:

// spheres.vert
attribute vec4 vPosition;
uniform mat4 mvpMatrix;
uniform float timelapsed; // time in milliseconds
void main (void)
{
float tl = timelLapsed / 1000.0; // time tl in seconds

vecl3 d;

float t = sin ( tl ); // t varies between -1 and 1

mat4d m = mat4( 1.0 ); // 4 x 4 identity matrix

m= 0.2 « m; // shrink sphere by a factor of 5
d.x = t; // translation in x-direction

d.y =t + 0.5%x1.0x%t=t; // translation in y-direction
m[(3][0] = d.x;

m[3][1] = d.y;

m[3][3] = 1.0; // reset last matrix element to 1
gl_Position = mvpMatrix * m * vPosition;

}

In the code, the time ¢ is sinusoidal, varying between -1 and 1. This makes the sphere oscillates
along a parabolic curve. Figure 19-17 below shows a few frames of this shader output.

= Jrenderer - o x ] /renderer - o x ] Jrenderer -
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Figure 19-17 Three Frames of Sphere Motion

19.8.2 Animated Particle Systems

We have mentioned in Chapter 11 about the creation and applications of a particle system, which
uses a large number of very small sprites or graphic objects to simulate certain kinds of fuzzy phe-
nomena or objects such as clouds, dust, explosions, falling leaves.fire, flowing water, fog smoke,
snow, sparks, meteor tails, stars and galaxies, or abstract visual effects like glowing trails, and
magic spells.

The basic idea in a particle system is that we model the motion of points in space using physical
laws or empirical experience. For each time step, we calculate the new position of each particle
for rendering. This works well with a vertex shader where it receives a time parameter from the
application. As a simple example, we use the technique in animating a sphere discussed above to



42 Animated Particle Systems

animate a cloud of randomly formed color particles, each of which is a point. We declare a class
called Particles, which is similar to the Spheres class discussed above except that now we do not
need to create any sphere. In addition, we also declare a class called ColorPoint that holds the
position and color of a “particle”:

class ColorPoint/{
public:
float position[4];
float color([4];

ColorPoint (float positionO[], float color0[]){ //constructor
for ( int i = 0; i < 4; i++ ) {
position[i] = positionO[i];
color[i] = color0[i];

}
}i

In the constructor of the class Particles, we create Npoints ColorPoint objects with random
positions and colors, and save them in an array (a vector object) named pointArray (both Npoints
and pointArray are data members of Particles):

//create Npoints particles

float position[4];
float color[4]
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for ( int i = 0; i < Npoints; ++i ) {
for ( int j = 0; 3 < 3; Jj++ ) {
position[j] = (float) (rand()$%$32000)/16000.0-1.0; //-1 -—> 1
color[j] = (float) ( rand() %32000 ) / 32000.0; // 0 —-—> 1
}
color[3] = position([3] = 1; //not used
ColorPoint cp = ColorPoint ( position, color );
pointArray.push_back ( cp ); //save in vector

}

The draw function of Particles send the position and the color of each particle to the vertex
shader:

void Particles::draw( float mvpMatrix([4][4] )

{
int positionHandle= glGetAttribLocation (program, "vPosition");
int mvpMatrixHandle=glGetUniformLocation (program, "mvpMatrix") ;
// pass model-view projection matrix to vertex shader
glUniformMatrix4fv (mvpMatrixHandle, 1, GL_FALSE, &mvpMatrix[0][0]);

int colorHandle = glGetUniformLocation (program, "vColor");
timeHandle = glGetUniformLocation (program, "timeLapsed");

ColorPoint =*cpj;
for ( int 1 = 0; 1 < Npoints; i++ ) {
cp = &pointArray[il];
glUniformé4fv (colorHandle, 1, cp->color);
glBegin ( GL_POINTS );
glvertex4fv ( cp->position );
glEnd() ;
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The vertex shader and the fragment shader are the same as those of the animated color sphere
presented in the previous section:

// particles.vert : vertex shader
attribute vecd4 vPosition;
uniform mat4 mvpMatrix;
uniform float timelapsed; // time in milliseconds
void main (void)
{
float t = timeLapsed / 5000.0; // adjust time

float s = sin ( t ); // s varies between -1 and 1
mat4d m = matd( 1.0 ); // 4 x 4 identity matrix
m= s * m; // try to create scale matrix
m[3][3] = 1.0; // set last matrix element to 1
// to form a proper scale matrix

gl_Position = m % mvpMatrix = vPosition;

}

// particles.frag : fragment shader

uniform vec4 vColor;

void main ()

{
gl_FragColor = vColor;

}

Figure 19-18 below shows three frames of the output of this shader; two thousand particles are
randomly palced on the screen.
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Figure 19-18 Three Frames of the Particle System Shader

19.8.3 Morphing

Morphing (shortened term of metamorphosing) is a technique that changes an object smoothly
from one object to another, a generalization of the tweening technique we discussed in Chapter
11. The points of an intermediate shapes are calculated using interpolation techniques from the
initial and final objects. We assume that the two objects have the same number of vertices, which
can be saved in arrays. Suppose we use linear interpolation, and we want to morph objects A to
B. Suppose A; and B; are the corresponding vertices of the objects. A corresponding point C; of
an intermediate shape is given by the affine combination of A; and B;:

Ci=(1—-1t)A;+tB; 0<t<1 (19.16)
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Initially, when ¢t = 0, C; = A;. Ast increases to 1, C; changes to B;. Equation (19.16) can be
easily evaluated using the glsl function mix. For instance, suppose v Postion and vPositionl are
two vecd that have the coordinate values of vertices A; and B;. Then the interpolated vertex can
be calculated by

vec4 inPosition = mix( vPosition, vPositionl, t );
where, for example, the first component of inPostion is calculated according to:
inPosition.x = (1 - t) * vPosition.x + t * vPosition1.x

The implementation of this technique is straight forward. As an example, we declare a class
called Morph, which is similar to the classes discussed above such as Spheres and Particles. In the
class, we declare two static float constant arrays, figureA and figureB, to store the vertex values of
the initial and final objects respectively:

const float Morph::figureA[][3] =
{{0,0,0}, {3,3,0}, {6,0,0}, {6,-6,0}, {4,-6,0},
{4,-4,0}, {2,-4,0}, {2,-6,0}, {0,-6,0}};
const float Morph::figureB[][3] =
{{0,0,0}, {3,0,0}, {6,0,0}, {6,-2,0}, {4,-2,0},
{4,-6,0}, {2,-6,0}, {2,-2,0}, {0,-2,0}};

In the example, figureA defines a wedge-like shape and figureB defines a T-shape. Both of them
have 9 vertices.

We pass the blending parameter ¢, which we call timeStep from the Morph class to the ver-
tex shader. This parameter, varying between O and 1, is incremented or decremented in the idle
callback function of the renderer:

static void idle (void)
{
static float timeStep = 0;
static bool increase = true;
float t = glutGet ( GLUT_ELAPSED_TIME );
if ( t - previousTime > 500.0 ) {
if ( timeStep > 0.91 )
increase = false;
else if ( timeStep < 0.09 )
increase = true;
if ( increase )
timeStep += 0.1;
else
timeStep -= 0.1;
morph->setTime ( timeStep );
previousTime = t;
glutPostRedisplay () ;

}

In the code, we have used a frame rate of 2 fps (frames per second). That is, the period between
two frames is 500 ms. The variable timeStep increases from 0 to 1 with step 0.1 and then decreases
from 1 to 0 and so on. So the animation morphs A to B and reverses direction, morphing the figure
from B to A and so on.

Like before, the draw member function passes the vertex data and other parameters to the
shaders:
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void Morph::draw( float mvpMatrix[4][4] )

{

}

int posHandle = glGetAttribLocation (program, "vPosition");

int posHandlel = glGetAttribLocation (program, "vPositionl");
glEnableVertexAttribArray ( posHandle );
glEnableVertexAttribArray ( posHandlel );
glVertexAttribPointer (posHandle, 3, GL_FLOAT, false, 0, figured);
glVertexAttribPointer (posHandlel, 3,GL_FLOAT, false, 0, figureB);
//timeHandle and Npoints are data members of class
timeHandle = glGetUniformLocation (program, "timeStep");

glDrawArrays ( GL_LINE_LOOP, 0, Npoints );

void Morph::setTime ( float t )

{

glUniformlf (timeHandle, t); //send timeStep to vertex shader

The following is the corresponding vertex shader, which is similar to those discussed above for

animation:

}

// morph.vert

attribute vec4 vPosition; //vertex of figureA

attribute vec4 vPositionl; //vertex of figureB

uniform mat4 mvpMatrix;

uniform float timeStep; //interpolation time parameter
void main (void)

{

vec3 d; //displacement

float t = timeStep;

mat4d m = matd( 1.0 ); // 4 x 4 identity matrix
//interpolated figure move along diagonal of screen

d.x = 8.0 x t; // translation in x-direction

d.y = 8.0 % t; // translation in y-direction
m[(3][0] = d.x;

m[3][1] = d.y;

m[3]([3] = 1.0; // reset last matrix element to 1
gl _Position = mvpMatrix » m % mix(vPosition, vPositionl, t);

}

Figure 19-19 below shows four frames of this shader’s output.

() (b) (©) (d)
Figure 19-19 Four Frames of the Morphing Shader
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19.9 Texture Shaders

One method to perform texture operations in glsl is to access the texture coordinates for each vertex
through built in attribute variables, one for each texture unit. The following are the available built
in variables that a shader can use:

attribute
attribute
attribute
attribute
attribute
attribute
attribute
attribute

vecd gl_MultiTexCoord0;
gl_MultiTexCoordl;
gl _MultiTexCoord2;
gl_MultiTexCoord3;
gl_MultiTexCoord4;
gl _MultiTexCoord5;
gl_MultiTexCoordb6;
gl _MultiTexCoord7;

vec4d
vecd
vecd
vec4d
vecd
vecd
vec4d

The texture matrix of each texture unit can be accessed through a uniform array:
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];

The vertex shader has to compute the texture coordinates for the vertex and store the values in the
pre-defined varying variable gl_TexCoord[i]. For example, we need to declare in the fragment
shader a special type of variable called sampler. Each sampler variable in a program repre-
sents a single texture of a particular texture type. It provides access to a particular texture ob-
ject, including all its parameters. OpenGL supports a variety of sampler types for accessing one-
dimensional (sampler1lD, two-dimensional (sampler2D), three-dimensional (sampler3D), and
cube-map (samplerCube) textures. The following table lists the sampler types that OpenGL sup-
ports; the prefix ¢ preceding sampler in a sampler name represents any of the 3 possible prefixes
(nothing for float, i for signed int, and u for unsigned int). The rest of the sampler’s name refers
to the texture type of the sampler:

Table 19-3 Names Map of GLSL Samplers

GLSL Sampler OpenGL Texture enum Texture Type

tsampler1D GL_TEXTURE_1D 1D texture

tsampler2D GL_TEXTURE_2D 2D texture

tsampler3D GL_TEXTURE_3D 3D texture

tsamplerCube GL_TEXTURE_CUBE_MAP Cubemap Texture

tsampler2DRect GL_TEXTURE_RECTANGLE Rectangle Texture

tsampler1 DArray GL_TEXTURE_1D_ARRAY 1D Array Texture

tsampler2DArray GL_TEXTURE_2D_ARRAY 2D Array Texture

tsamplerCubeArray GL_TEXTURE_CUBE_MAP_ARRAY | Cubemap Array Texture
(requires GL 4.0 or ARB
_texture_cube_map_array)

tsamplerBuffer GL_TEXTURE_BUFFER Buffer Texture

tsampler2DMS GL_TEXTURE_2D_MULTISAMPLE | Multisample Texture

tsampler2DMSArray | GL_.TEXTURE_2D Multisample Array Texture

_MULTISAMPLE_ARRAY

For example,

uniform sampler2D texHandle;

declares a two-dimensional sampler with float data type.
The function texture2D() gives us a texel (texture element). It takes a sampler2D and texture
coordinates as inputs and returns the texel value:
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vecd texture2D (sampler2D texHandle, vec2 gl_TexCoord[0].st );
We can pass the texture coordinates to the fragment shader using gl_TexCoord[i], for example,
gl_TexCoord[0] = gl_MultiTexCoord0;

The simple example presented in the next section shows how to use these features to render an
object with texture.

19.9.1 A Simple Texture Example

In this example, we apply a two-dimensional texture, which is a black-and-white checkerboard
pattern to a graphics object created by the glu utilities. The vertex shader is simple enough,
receiving the texture coordinates with the built-in variable g/_MultiTexCoord0 and passing them to
the fragment shader using the built-in array variable gl_TexCoord:

//simpletex.vert
attribute vecd4 vPosition;
uniform mat4 mvpMatrix;

void main (void)

{
gl _TexCoord[0] = gl_MultiTexCoordO0;
gl_Position = mvpMatrix % vPosition;

}

The fragment shader is also very simple. It obtains the texture color from a sampler and blends
it with another color specified by the application using the mix function:

// simpletex.frag
uniform sampler2D texHandle;
uniform vec4 vColor;

void main (void)

{
vec3 texColor = vec3 (texture2D (texHandle, gl_TexCoord[0].st));
vecd color = mix ( vColor, vec4d (texColor, 1.0), 0.6 );
gl_FragColor = color;

}

In the application, we make use of the glu utilites to create some quadric objects and a teapot
that support texturing. We do the usual initialization for texture as we discussed in Chapter 7.
Suppose we declare a class called Simpletex, which is similar to classes such as Morph or Spheres
discussed above, and suppose the texture image data is stored in a two-dimensional array named
checkimage. The following code shows the specification of texture features:

void Simpletex::init2DTexture ()

{

glGenTextures (1, &texName);

glBindTexture (GL_TEXTURE_2D, texName); //now we work on texName
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,GL_LINEAR) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,GL_LINEAR) ;
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, iWidth,

iHeight, 0, GL_RGB, GL_UNSIGNED_BYTE, checkImage) ;

glActiveTexture (GL_TEXTUREO) ;

glBindTexture (GL_TEXTURE_2D, texName) ;
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In the code, iwidth and iwidth are the image width and height of the checkerboard texture image;
they are set to 64 in the example.

The texture data and other parameters are passed to the shaders in the draw routine for render-
ing:

void Simpletex::draw( float mvpMatrix[4][4] )

{
int posHandle = glGetAttribLocation (program, "vPosition");
glEnableVertexAttribArray ( posHandle );

int mvpMatrixHandle=glGetUniformLocation (program, "mvpMatrix") ;
glUniformMatrix4fv (mvpMatrixHandle, 1, GL_FALSE, &mvpMatrix[0] [0]);

int colorHandle = glGetUniformLocation (program, "vColor");
glUniform4f (colorHandle, o, 1, 1, 1); //set color of object
GLUquadric *gobj=gluNewQuadric(); //create quadric objects
gluQuadricTexture (qobj,GL_TRUE); //requires texture coordinates
if ( objType == )

gluSphere (gobj, 0.8,32,32);

else if ( objType == 1)
gluCylinder (gobj, 0.8, 0.8, 1.2, 32, 32);//top, base height
else
glutSolidTeapot (0.6f); //has texture coordinates

gluDeleteQuadric (gobj) ;
}

The code allows us to choose an object to be rendered, which can be a sphere, a cylinder or a
teapot, depending on the value of the int variable 0bjType, which represents object types. The
function gluNewQuadric creates and returns a pointer to a new quadric object. A quadric surface
is described by a polynomial with each term in the form z™y"z*, with m +n + k < 2. Any
quadric can be expressed in the form

q(z,y,2) = Az? + By? + C2* + Doy + Exz + Fyz +Ge + Hy + Iz +J =0 (19.17)

wehre A, ..., J are constants. The function gluQuadricTexture specifies whether texture coor-
dinates should be generated for the quadric for rendering with the quadric object. A value of
GL_TRUE indicates that texture coordinates should be generated. The renderer, which is not
shown here, allows a user to press the key ‘t’ to toggle the object types, and to press other keys to
rotate, translate or magnify the object. Figure 19-20 below shows a sample output of each textured
object in the example.

[=] Jrenderer -ox [ derer -ox o ren derer

(a) (b) (©))
Figure 19-20 Sample Outputs of Textured Objects



Chapter 19 OpenGL Shading Language (GLSL) 49

Actually in this example, we make use of the command gluQuadricTexture to map the texture
coordinates and have not shown you how the texture coordinates are set. We have already dis-
cussed the texture coordinate mapping principles in Chapter 7. Here, again we use the Spherel
shader example discussed in Section 19.7 above to review how this is done.

We have presented in Equation (7.29) of Chapter 7 that the texture coordinates of a spherical
surface is given by:

s= L
2 (19.18)
b
-

To implement the texture mapping for our Spherel, we declare another XYZ vector named fex-
Points, which saves the texture coordinates at all the vertices. The createSphere function becomes
(we call our new class Spherelt):

void Spherelt::createSphere ( float r, int nSlices, int nStacks )
{

double phi, theta;

XYZ *p = new XYZ();

XYZ *t = new XYZ(); //for texture coordinates

const double PI = 3.1415926;

const double TWOPI = 2 x PI;

for ( int j = 0; Jj < nSlices; J++ ) {
//phi: 0 to 2pi (modified for texture coordinates)
phi = j = TWOPI / (nSlices-1);

for ( int 1 = 0; i1 < nStacks; i++ ) {
theta = i » PI / (nStacks-1); //0 to pi
p—>x = r x (float) ( sin ( theta ) = cos ( phi ));
p—>y = r % (float) ( sin ( theta ) * sin ( phi ));
p—>z = r x (float) cos ( theta );
t->x = phi / TWOPI; // s (column)
t->y = 1 - theta / PI; // t (row)
vertices.push_back ( xp );

texPoints.push_back ( *t );

}

The texture coordinates are then saved in an array named fexCoords along with the saving of the
spherical coordinates in the Spherelt class constructor:

sphereCoords = new float[3xnVertices];
texCoords = new float[2*nVertices];
int k = 0;
int kk = 0;
for ( int i1 = 0; 1 < nVertices; i++ ) {
XYZ v = vertices[i];
sphereCoords [k++] = v.x;
sphereCoords [k++] = v.y;
sphereCoords [k++] = v.z;
v = texPoints[i];
texCoords [kk++] = v.x;
texCoords [kk++] = v.y;

}

After we have also incorporated the texture features of Simpletex in Spherelt, we only need to add
two statements in the draw function to access the texture coordinates:
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void Spherelt::draw( float mvpMatrix([4][4] )

..... //Same as draw() of Spherel
glEnableClientState (GL_TEXTURE_COORD_ARRAY) ;
glTexCoordPointer ( 2, GL_FLOAT, 0, texCoords );
// Draw all triangles

for ( int 1 = 0; 1 < nTriangles; i++ ) {
glDrawElements ( GL_TRIANGLES, 3,
GL_UNSIGNED_SHORT, (drawOrders + i*3 ));

For the vertex shader, we just need to add the statement in main():

gl_TexCoord[0] = gl_MultiTexCoord0;

which passes the texture coordinates to the fragment shader, where we mix the light intensity
obtained from the Phong model to the texture color:

//fragment shader
void main ()

..... //same as fragment shader of Spherel
vecd intensity = ambient + diffuse + specular;

vecd4 color = mix ( intensity, vec4 (texColor, 1.0), 0.2 );
gl_FragColor = color;

Figure 19-21 below shows an output of this shader program.

=] Jrenderer o x

Figure 19-21 Sample Output of Textured Lit Sphere
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19.9.2 Bump Mapping with Shaders

Bump mapping is a texture mapping technique that can make a smooth surface appear rough,
looking more realistic without increasing the geometry complexity. For example, we can apply
bump mapping to the surface of a sphere to make it look like an orange, which has bumpy skin.

The idea of the technique is to perturb the normal for each fragment. The perturbations can be
generated from an algorithm or saved as textures (called normal-map or bump-map) in memory.

The normal vector contained in a texel of a normal-map represents the vector perpendicular to

the surface of an object at the considered texel. Without deformation, the proper normal vector
is (0,0,1) as its XY Z components. We can modulate the vector to make it differ slightly from
the proper one. For example, a modulated normal with components (0.1,0.2,0.975) indicates a
modification of the surface. A normal vector considered here is always normalized, having unit
length,ie. (X2 +Y?+2%)=1.

In the technique, we form an orthonormal frame of reference using vectors normal, tangent and
binormal (tangent space) at each vertex of the surface:

X-axis =( 1,0, 0) ( tangent vector t )
Y-axis = (0, 1, 0) ( binormal vector b )
Z-axis = (0, 0, 1) ( normal vector n )

This is similar to the Frenet frame we discussed in Chapter 14. To work in this orthonormal frame
whose origin is at a vertex of the surface, we need a transformation to project a vector a = (X, y,
z) expressed in our world coordinate system (i, j, k) to a‘ in the new coordinate system with basis
(t, n, b). This can be done by first translating the origin of our coordinate system to the surface
vertex and make an appropriate rotation. If all vectors and points are represented in homogeneous
coordinates as 4 x 1 matrices, the 4 x 4 transformation matrix that brings the basis (i, j, k) to the
orthonormal frame at a vertex p = (ps, by, p~) and performs a rotation is given by:

tm ty tz 0 0 0 0 Px tm ty tz Dz
_ by b, b, O 0 0 0 py . by by b, py

M = Ng Ny ny 0 0 0 0 p, | ne ny ns s (19.19)
0 0 0 1 0 0 0 1 0 0 0 1

Note that there is a subtle difference between the Frenet frame transformation matrix of (14.11)
in Chapter 14 and the transformation matrix M here. The former transformation rotates the basis
(i, j, k) to the new basis (T, N, B) so that all cross-sections will be rotated accordingly. Here,
the transformation matrix M lets us express the components of a vector (or a point) in the new
coordinate system (t, n, b).

For some parametric surfaces, a tangent at a point can be calculated conveniently by differenti-
ating each coordinate with respect to a surface parameter. For example, a unit sphere centered at
the origin O is described by the parametric equations of (19.3) with r = 1. Atapoint P = (z,y, 2)
on the sphere, we can calculate the unit normal n and a unit tangent t easily:

x on —sinfsing —y
n=P-0=|vy |, t=—-= sinfcoso = x , (19.20)
2 0¢ 0 0

However, the tangent vector of (19.20) is undefined at the poles when 6 = 0, or 180°, which makes
all three components of t in (19.20) become 0. For these special situations, we can set the vector
to point along the y-axis, i.e.,

t=| 1| when z=1,-1 (19.21)
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A binormal vector b is given by the cross product of t and n (i.e. b = t x n). So the transformation
matrix M (z # £1) is

-y x 0

Mo | bbby (19.22)
r Yy z =z
0 0 0 1

In glsl, the transformation matrix can be easily implemented like the following:

attribute vecd4 vPosition;

mat4d M = mat4 (vecd (t, vPosition.x), vec4d (b, vPosition.y),
vecd4 ( n, vPosition.z), vec4(0.0, 0.0, 0.0, 1.0));

}

Any vector or vertex can be transformed to this surface-local coordinate system by multiplying
it by M. (Note that OpenGL matrices are column-major; their columns are our rows.)

In the following, we use the textured sphere (i.e. Spherelt) we discussed above as an example
to illustrate the principle of a bump mapping shader. We call our new class Bump, which is a slight
modification of Spherelt. For simplicity and clarity of presentation, some parameters are hard-
coded in the shaders and we discard many fancy lightling features such as diffuse and ambient
lights and material properties. The light intensity is ‘made up’ inside the fragment shader. We
only pass to the shaders the light postion and eye position (viewing point). However, we do need
the texture features for reasons explained later. The following is the vertex shader for the example:

// bump.vert: Source code of vertex shader
uniform mat4 mvpMatrix;

attribute vec4 vPosition;

uniform vecd4 eyePosition;

uniform vecd4 lightPosition;

varying vecd4 lightVec; //light direction vector
varying vecd eyeVec; //eye direction vector
void main ()
{

vecd O = vecd ( 0.0, 0.0, 0.0, 1 ); //origin

// Normalized normal in object coordinates
// Normal can be also obtained by:

// vec3 n = normalize ( gl_NormalMatrix * gl_Normal );
vec3 n = normalize(vPosition.xyz - 0.xyz);
vec3 t; //tangent
//tangent for sphere (usually from application)
if (n.z < 1.0 && n.z > -1.0 ) {
t.x = -n.y; //t perpendicular to n;
t.y = n.x;
} else {
t.x = 0.0; //special treatment at poles
t.y = 1.0;
}
t.z = 0.0;
vec3 b = cross(n, t); //binormal

//Since n is normalized, so b and t are also normalized
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//Transformation matrix, which transforms objects

// to surface-local system (t, b, n)

mat4 M = mat4 (vec4d (t,vPosition.x), vec4d(b,vPosition.y),
vecd (n,vPosition.z), vec4(0.0,0.0,0.0,1.0));

//vectors in surface-local system
lightVec = normalize ( M » (lightPosition - vPosition) );
eyeVec = normalize( M x ( eyePosition - vPosition ) );

//texture coordinates for fragment shader
gl_TexCoord[0] = gl_MultiTexCoord0;

gl_Position = mvpMatrix % vPosition;

}

In the code, the varying variables lightVec and eyeVec are the light direction vector and the eye
direction vector, corresponding to L and V at the surface point vPosition, of Figure 19-14 respec-
tively. They are calculated, transformed to the surface-local system and normalized and are passed
to the fragment shader.

On the spherical surface we need to select some bump centers, where the normals of the regions
around them will be perturbed. However, our application has only passed in the coordinates and
attributes of a limited number of points, the vertices of the triangles that form the sphere. The
attributes of all other pixels are obtained by interpolation. How do we know the coordinates of a
point on the surface? The trick is to make use of the texture coordinates, which can specify any
point on the surface as the whole spherical surface has been mapped to the 1 x 1 st domain with
0 <s<1and0 <t < 1. That’s why we need the statement

gl_TexCoord[0] = gl_MultiTexCoord0;

in the vertex shader.
The following is a corresponding fragment shader, a simplied version of one used by many
authors. We explain this code below.

// bump.frag: Source code of fragment shader

varying vecd4 lightVec;//light dir vector in surface-local system
varying vecd eyeVec; //eye direction vector in surface-local system
void main ()
{

float bumpDensity = 10.0;

float bumpSize = 0.1;

vec3 litColor;

vec2 ¢ = bumpDensity x gl_TexCoord[0].st;

vec2 b = fract( ¢ ) - vec2(0.5, 0.5 ); //a texsel on surface
vec3 nlj; //modulated normal
float r2; //square of radius of bump

r2 = b.x x b.x + b.y * b.y;

if ( r2 <= bumpSize ) { //modulate normal
nl = vec3 (b, 1.0 ); //nl.z =1
nl = normalize ( nl );
} else //do not perturb normal

nl = vec3 ( 0, 0, 1 );
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vec3 surfaceColor = vec3 ( 1.0, 0.6, 0.2 );

litColor = surfaceColor * max(dot (nl, lightVec.xyz), 0.0 );
vec3 reflectVec = reflect ( lightVec.xyz, nl );

float specularLight = max( dot (eyeVec.xyz, reflectVec), 0.0);
float specularFactor = 0.5;

specularLight = pow ( specularLight, 6.0 ) *x specularFactor;
litColor = min ( litColor + specularLight, vec3(1.0) );

gl_FragColor = vecd4 ( litColor, 1.0 )
}

This fragment shader defines the bump locations implicitly through the variable bumpDensity,
which is the one-dimensional density of bumps, and the fucntion fract. The fract (x) function
returns the fractional part of X, i.e. X minus floor ( x ). The input parameter can be a float or a
float vector. In the latter case, the operation is done component-wise. After the multiplication of
bumpDensity, the 1 x 1 st domain is magnified as shown in Figure 19-22 below, where bump-
Density is 5. The total number of bumps on the surface is the square of bumpDensity and is equal
to 52 = 25 in the example of Figure 19-22. This is because the new domain can be divided into
equally spaced grid lines in the s and the ¢ directions. Each intersection point of the grid lines is
described by two integer coordinates like point b in Figure 19-22(b) that has coordinates (1, 1). In
Figure 19-22(b), the integer values of the components of any point in the shaded region are always
(1,1). Therefore, the unit shaded square represent the group of points where the integer parts of
their coordinates is (1,1). Their fractional parts represents how far the point is from (1,1), an
intersection point. If we shift the fraction components by (0.5, 0.5), then the center of the grid
square can be regarded as a bump center. This is done by the statement:

vec2 b = fract( ¢ ) - vec2(0.5, 0.5 ); //a texsel on surface
We "bump’ a point (modulate the unit normal n/ at the point) only if it lies within the radius of a

circle as shown in the figure, otherwise the normal is left unchanged (i.e. n1 = (0,0, 1)). In the
code the float variable r2 is the square of the radius of the circle, which is inside the square.

a=(0.2,0.2) b=5xa=(1.0,1.0)
1.0 5
X
t —
0.2 ? 1 5
0.0 0
0.0 0.2 S 1.0 0 1 2 3 4 5

(a) (b)

Figure 19-22 Texture Coordinates Multiplied by bumpDensity (=5)
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The vec3 variable reflectVec is the ray reflection direction vector, which is the vector R of Fig-
ure 19-14. Its value is calculated using the function reflect.

We hard-code the surface-color and compute the diffuse and specular reflection intensity values
in the usual way except that vector values are in surface-local systems. Figure 19-23(a) below
shows an output of this shader.

In the above example, we modulate normals using an algorithm. Alternatively, we can store the
normal perturbations as a texture, which is referred to as a bump map or a normal map. Using
our textured sphere as an example, we can create a bump map with minor modifications to our
checkerboard texture data:

void Bump::makeCheckImage (void)
{
int i, 3, r, 9;
for (i = 0; i < iwidth; i++) {
for (j = 0; j < iHeight; J++) {
r = 3
g = rand() % 32;
[
[
[

[

checkImage[i 31[0] = (GLubyte) r;
checkImage[i][j]l[1] = (GLubyte) g;
checkImage[i] (GLubyte) 255;

|_4

b
[un}
—
—
[\
I

}

The red and green components of the texture are randomly assigned an integer value betwenn
0 and 32, and the blue component is assigned a value of 255. When the RGB components are
normalized to [0, 1], the red and green values are in [0, 0.125] and the blue value is always 1. The
RGB components are mapped to the XYZ values of a normal at the surface. This means that we
only perturb the X and Y components with small values and always keep the Z component, which
is perpendicular to the surface, to be 1. (Of course, after we have normalized the normal vector,
the Z value also changes.) The following is the code for the fragment shader that uses this normal
map. An output of it is shown in Figure 19-23(b).

o | Jrenderer - O x | Jrenderer - o x

(a) (b)
Figure 19-23 Outputs of Bump Mapping Shaders

// bump.frag: Source code of fragment shader
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varying vecd4 lightVec; //light dir vector in surface-local system
varying vecd eyeVec; //eye direction vector in surface-local system
uniform sampler2D texHandle;

void main ()

{

vec3 litColor;

vec3 nl; //modulated normal

nl = texture2D (texHandle, gl_TexCoord[0].st) .rgb;

nl = normalize ( nl );

vec3 surfaceColor = vec3 ( 1.0, 0.6, 0.2 );

litColor = surfaceColor * max(dot (nl, lightVec.xyz), 0.0 );
vec3 reflectVec = reflect ( lightVec.xyz, nl );

float specularlLight = max ( dot (eyeVec.xyz, reflectVec), 0.0 );
float specularFactor = 0.5;

specularLight = pow ( specularLight, 6.0 ) * specularFactor;
litColor = min ( litColor + specularlLight, vec3(1.0) );

gl_FragColor = vecd4 ( litColor, 1.0 );

Complete related programs of this chapter can be downloaded from the web site of this book.
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