An Introduction to 3D Computer Graphics, Stereoscopic
Image, and Animation in OpenGL and C/C++

Fore June

Chapter 5 Color

5.1 Color Spaces

To describe an image, we need a way to represent the color information. To describe a
gray-level image, we only need one number to indicate the brightness or luminance of each
spatial sample. We need more numbers if we want to describe a color image. In reality, our
perception of light depends on the light frequency and other properties. When we view a
source of light, our eyes respond to three main sensations. The first one is the color, which
is the main frequencies of the light. The second one is the intensity (or brightness), which
represents the total energy of the light; we can quantify brightness as the luminance of the
light. The third one is the purity (or saturation) of the light, which describes how close a
light appears to be a pure spectral color, such as red, green or blue. Pale colors have low
purity and they appear to be almost white, which consists of a mixture of the red, green and
blue colors. We use the term chromaticity to collectively refer to the two characteristics
of light, color purity and dominant frequency (hue).

Very often, we employ a color model to precisely describe the color components or
intensities. In general, a color model is any method for explaining the properties or behavior
of color within some particular context. No single model can explain all aspects of color, so
people make use of different models to help describe different color characteristics. Here,
we consider a color model as an abstract mathematical model that describes how colors are
presented as tuples of numbers, typically as three or four values or color components; the
resulting set of colors that define how the components are to be interpreted is called a color
space. The commonly used RGB color model naturally fits the representation of colors by
computers. However, it is not a good model for studying the characteristics of an image.

5.2 RGB Color Model

X-ray, light, infrared radiation, microwave and radio waves are all electromagnetic (EM)
waves with different frequencies. Light waves lie in the visible spectrum with a narrow
wavelength band from about 350 to 780 nm. The retina of a human eye can detect only EM
waves lying within this visible spectrum but not anything outside. The eye contains two
kinds of light-sensitive receptor cells, cones and rods that can detect light.

The cones are sensitive to colors and there are three types of cones, each responding to
one of the three primary colors, red, green and blue. Scientists found that our perception
of color is a result of our cones’ relative response to the red, green and blue colors. We can
form any color by mixing these three colors with certain intensity values. The human eye
can distinguish about 200 intensities of each of the red, green and blue colors. Therefore,
it is natural that we represent each of these colors by a byte which can hold 256 values. In
other words, 24 bits are enough to represent the ‘true’ color. More bits will not increase
the quality of an image as human eyes cannot resolve the extra colors. Each eye has 6 to
7 million cones located near the center of the eye, allowing us to see the tiny details of an
object.

On the other hand, the rods cannot distinguish colors but are sensitive to dim light.
Each eye has 75 million to 150 millions rods located near its corner, allowing us to detect
peripheral objects in an environment of near darkness.

2

Chapter 5 Color 3

We can characterize a visible color by a function C'(\) where A is the wavelength of
the color in the visible spectrum. The value for a given wavelength A gives the relative
intensity of that wavelength in the color. This description is accurate when we measure the
color with certain physical instrument. However, the human visual system (HVS) does
not perceive color in this way. Our brains do not receive the entire distribution C'(\) of the
visible spectrum but rather three values — the tristimulus values — that are the responses of
the three types (red, green and blue) of cones to a color. This human characteristics leads
to the formulation of the trichromatic theory: If two colors produce the same tristimulus
values, they are visually indistinguishable. A consequence of of this theory is that it is
possible to match all of the colors in the visible spectrum by appropriately mixing three
primary colors. In other words, any color can be created by combining red, green, and blue
in varying proportions. This leads to the development of the RGB color model.

The RGB (short for red, green, blue) color model decomposes a color into three com-
ponents, Red (R), Green (G), and Blue (B); we can represent any color by three
components R, G, B just like the case that a spatial vector is specified by three components
x,y, z. If the color components R, G and B are confined to values between 0 and 1, all
definable colors lie in a unit cube as shown in Figure 5-1. This color space is most natural
for representing computer images, in which a color specification such as (0.1, 0.8, 0.23)
can be directly translated into three positive integer values, each of which is represented by
one byte.

A
Blue [0,0,1] Cyan
M t
agenta W hite

[0,1,0]

/Bl’ack Green
10
Re 150,0) ellow

Figure 5-1 RGB Color Cube

In this model, we express a color C' in the vector form,

4 RGB Color Model

C

I
@Q

0<R,GB<1 5.1
B

In some other notations, the authors may consider R, GG, and B as three unit vectors like
the three spatial unit vectors i, j, and K. Just as a spatial vector V can be expressed as
V = zi+yj+ zk, any color is expressed as C' = (rR+ gG +bB), and the red, green, blue
intensities are specified by the values of r, g, and b respectively. In our notation here, R, G,
and B may represent the intensity values of the color components. The next few sections
discuss in more detail the color representation of various standards.

Suppose we have two colors C; and C5 given by

R1 R2
Cl = G1 5 02 = GQ
By B

Does it make sense to add these two colors to produce a new color C'? For instance, con-
sider

R+ Ry
C=0,+0Cy= G+ Gy
B + By

You may immediately notice that the sum of two components may give a value larger than
1 which lies outside the color cube and thus does not represent any color. Just like adding
two points in space is illegitimate, we cannot arbitrarily combine two colors. A linear com-
bination of colors makes sense only if the sum of the coefficients is equal to 1. Therefore,
we can have

C =01C1 + aCy (5.2)
when

0<a,as and a1+ay=1

In this way, we can guarantee that the resulted components will always lie within the color
cube as each value will never exceed one. For example,

R=oRitasRy<a1 x1l4+ayx1=1

which implies

R<1

The linear combination of colors described by Equation (5.2) is called color blending.

Chapter 5 Color 5

5.3 Color Systems

In the RGB model described above, a given color is a point in a color cube as shown in
Figure 5-1, and can be expressed as

R
c=1| G 0<R,G,B<L1
B

However, RGB systems do not produce identical perceptions and they vary significantly
from one to another. For example, suppose we have a yellow color described by the triplet
(0.9, 0.8, 0.0). If we feed these values to a CRT and a film image recorder, we shall see
different colors, even though in both cases the red is 90 percent of the maximum, the green
is 80 percent of the maximum, and there is no blue. The reason is that the CRT phosphors
and the film dyes have different color distribution responses. Consequently, the range of
displayable colors (or the color gamut) is different in each case.

Different organizations have different interests and emphasis on color models. For ex-
ample, the graphics community is interested in device-independent graphics; it will be a
burden for them to develop graphics APIs that address the real differences among display
properties. Fortunately, this bas been addressed in colorimetery literature, and standards
exist for many common color systems. For example, the National Television System Com-
mittee (NTSC) defines an RGB system which forms the basis for many CRT systems. We
can view the differences in color systems as the differences between various coordinate
system for representing the tristimulus values. For example, if

Ry Ry
Cl = Gl s and 02 = G2 (53)
B Bs

are the representations of the same color in two different systems, we can find a 3 x 3 color
conversion matrix M such that
Co=MCy 5.4

Regardless of the way we find this matrix, it allows us to produce similar displays on
different color systems.

However, this is not a good approach because the color gamuts of two systems may not
be the same; even after the conversion of the color components from one system to another,
the color may not be producible on the second system. Also, the printing and graphic arts
industries use a four color subtractive system (CMYK) that includes black (K) as the fourth
primary. Moreover, the linear color theory is only an approximation to human perception
of colors. The distance between two points in the color cube does not necessarily measure
how far apart the colors are perceptually. For example, humans are particularly sensitive to
color shifts in blue.

The International Commission on Illumination, referred to as the CIE (Commission In-
ternationale de 1’Eclarage) defined in 1931 three standard primaries, which are actually
imaginary colors. CIE defined the three standard primaries mathematically with positive
color-matching functions shown in Figure 5-2. If the spectral power distribution (SPD) for
a colored object is weighted by the curves of Figure 5-2, the CIE chromaticity coordinates
can be calculated. This provides an international standard definition of all colors. The CIE
primaries also eliminate negative-value color-matching and other problems related to the

6 The XYZ Color Model

selection of a set of real primaries.

Zn
1.5
5 Ay A
g 2
400 500 [=1u]4} Fo0

wavelength {nm)
Figure 5-2 Matching functions of the three CIE primaries

5.3.1 The XYZ Color Model

The set of CIE primaries defines a color model that is in general referred to as the XYZ
color model, where parameters X, Y, and Z represent the tristimulus values, the amount of
each CIE primary required to produce a given color. The tristimulus values do not corre-
spond to real colors, but they do have the property that any real color can be represented
as a positive combination of them. Therefore, an RGB model describes a color in the same
way as the XYZ model does. Actually, most color standards are based on this theoretical
XYZ model. In this model, the Y primary is the luminance of the color and all colors can
be represented by positive tristimulus values.

Due to the nature of the distribution of cones in the eye, the tristimulus values depend
on the observer’s field of view. To eliminate this variable, the CIE defined the standard
(colorimetric) observer, which is characterized by three color matching functions. The
color matching functions are the numerical description of the chromatic response of the
observer. The three color-matching functions are referred to as X (), Y ()\), and Z()),
which can be thought of as the spectral sensitivity curves of three linear light detectors that
yield the CIE XYZ tristimulus values X, Y, and Z. The tabulated numerical values of these
functions are known collectively as the CIE standard observer.

The tristimulus values for a color with a spectral power distribution I(\) are given in
terms of the standard observer by:

X:/ngmw

0

Y:/'?gumA (5.5)
0

Z:A ZAI(\)dA

where) is the wavelength of the equivalent monochromatic light.

Chapter 5 Color 7

A color can be specified by the tristimulus values, X, Y, and Z:

X
C=1Y (5.6)
Z

We may also represent a color in the XYZ color space as an additive combination of the
primaries using unit vectors X, Y, and Z. Therefore, we can express Equation (5.6) as

C=XX+YY+ZZ (5.7)

We can use 3 x 3 matrices to convert from XYZ color representation to representations in
other standard systems. Also, it is convenient to normalize the X, Y, and Z values against
the sum X + Y + Z, which is the total light energy. The normalized values are usually
referred to as the chromaticity coordinates:

X B Y B Z
TTXiv+2 VT X+v+2 T X1V +2

(5.8)

As x+y+ 2z = 1, any color can be represented with just the x and y coordinates if the total
energy is known. The parameters x and y depend only on hue and purity of the color and
are called chromaticity values. Instead of using the total energy, people typically use the
luminance Y and the chromaticity values x, and y to specify a color. The other two CIE
values can be calculated as . .
X=-Y, Z=-Y (5.9)
Y Y
where z = 1 — 2 — y. Using chromaticity coordinates (z,y), we can represent all colors
on a two-dimensional diagram known as chromaticity diagram.

Color Gamuts

The gamut is the set of possible colors within a color system. No one system can reproduce
all possible colors in the visible spectrum. It is not possible for a designer to create every
color in the spectrum with either additive or subtractive colors. Both systems can reproduce
a subset of all visible color, and while those subsets generally overlap, there are colors
which can be reproduced with additive color and not with subtractive color and vice versa.

5.3.2 YUYV Color Model

While the RGB color model is well-suited for displaying color images on a computer
screen, it is not an effective model for image processing or video compression. This is
because the human visual system (HVS) is more sensitive to luminance (brightness)
than to colors. Therefore, it is more effective to represent a color image by separating the
luminance from the color information and representing luma with a higher resolution than
color.

The YUYV color model, defined in the TV standards, is an efficient way of representing
color images by separating brightness from color values. Historically, YUV color space
was developed to provide compatibility between color and black /white analog television
systems; it is not defined precisely in the technical and scientific literature. In this model,
Y is the luminance (luma) component, which is the same as the Y component in the CIE

8 The XYZ Color Model

XYZ color space, and U and V are the color differences known as chrominance or chroma,
which is defined as the difference between a color and a reference white at the same lumi-
nance. The conversion from RGB to YUYV is given by the following formulas:

Y = kR + k,G + kB

U=B-Y (5.10)
V=R-Y
with
ngrakbvkg (5 11)

ke + iy + kg =1

Note that equations (5.10) and (5.11) imply that 0 < Y < 1 if the R, G, B components lie
within the unit color cube. However, U and V can be negative. Typically,

kp = 0.299, k, = 0.587, ky = 0.114 (5.12)

which are values used in some TV standards.

The complete description of an image is specified by Y (the luminance component)
and the two color differences (chrominance) U and V. If the image is black-and-white,
U =V = 0. Note that we do not need another difference (G—Y") for the green component
because that would be redundant. We can consider (5.10) as three equations with three
unknowns, R, G, and B. We can always solve for the three unknowns and recover R, G,
and B. A fourth equation is not necessary.

It seems that there is no advantage of using YUV over RGB to represent an image
as both system requires three components to specify an image sample. However, as we
mentioned earlier, human eyes are less sensitive to color than to luminance. Therefore, we
can represent the U and V components with a lower resolution than Y and the reduction of
the amount of data to represent chrominance components will not have an obvious effect
on visual quality. Representing chroma with less number of bits than luma is a simple but
effective way of compressing an image.

The conversion from RGB space to YUV space can be also expressed in matrix form:

Y 0.299 0.587 0.114 R
U | = —-0299 -0.587 0.886 G (5.13)
14 0.701 -0.587 —0.114 B

The conversion from YUV space to RGB space using matrix is accomplished with the
inverse transformation of (5.13):

R 11 0 Y
G l=[1 o 1 U (5.14)
B 1 —0.509 —0.194 1%

5.3.3 YCbCr Color Model

The YCbCr color model defined in the standards of ITU (International Telecommunication
Union) is closely related to YUV but with the chrominace components scaled and shifted
to ensure that they lie within the range 0 and 1. It is sometimes abbreviated to YCC. It is

Chapter 5 Color 9

also used in the JPEG and MPEG standards. In this model, an image sample is specified
by a luminance (Y) component and two chrominance components (Cb, and Cr). The
following equations convert an RGB image to one in YCbCr space.

Y = kR + k,G + kB

B-Y
Cb—m+05
(5.15)
_ (R-Y)
CT_72(1*kr) + 0.5

kT+kb+kg:1

An image may be captured in the RGB format and then converted to YCbCr to reduce
storage or transmission requirements. Before displaying the image, it is usually necessary
to convert the image back to RGB. The conversion from YCbCr to RGB can be done by
solving for R, G, B in the equations of (5.15). The equations for converting from YCbCr
to RGB are shown below:

R=Y +(2C, —1)(1 - k,)

B = Y+(2057 1)(1 7]%)

Y — kR — kB (5.16)
G=_L it 7 BB
kg
oy B20 = D~ k) +k(2C, = (1L~ k)
_ v

If we use the ITU standard values k, = 0.114, k. = 0.299,k;, = 1 — ky — k, = 0.587 for
(5.15) and (5.16), we will obtain the following commonly used conversion equations.

Y = 0.299R + 0.587G + 0.114B
Cyp=0.564(B —Y)+0.5
C,=0713(R—Y)+05
(5.17)
R =Y +1.402C, — 0.701
G =Y —0.714C, — 0.344C), + 0.529
B =Y +1.772C), — 0.886

In equations (5.15), it is obvious that 0 < Y < 1las 0 < R, G, B < 1. It turns out that the
chrominance components C, and C,. defined in (5.15) also always lie within the range [0,
1]. We prove this for the case of Cj,. From (5.15), we have

10 The XYZ Color Model

B-Y 1
Cy = —+-
b 21—y | 2
 B—kR—kG—-kB+1—k
N 2(1 — ky)
_ B | -kR-kG+1-k
2 2(1 — ky)
B k. x1—kyx14+1—k,
> = g
= 5" 2(1 —)
B
2
> 0
Thus
Cy,>0 (5.18)
Also,
B-Y 1
Cy = ——+=
b 2(1 — ky) *3
_ B-kR-kG-kB 1
N 2(1 — ky) 2
B—kB 1
<
- 2(1-ky) 2
B n 1
22
1,1
- 2 2
= 1
Thus
C,<1 (5.19)
Combining (5.18) and (5.19), we have
0<C, <1 (5.20)
Similarly
0<C. <1 (5.21)

In summary, we have the following situation.

If O0<RGB<I
(5.22)
then 0<Y,C,,C, <1

Chapter 5 Color 11

Note that the converse is not true. That is, if 0 < Y, C,,C, < 1, it does not imply
0 < R,G, B < 1. A knowledge of this helps us in the implementations of the conversion
from RGB to YCbCr and vice versa. We mentioned earlier that the eye can only resolve
about 200 different intensity levels of each of the RGB components. Therefore, we can
quantize all the RGB components in the interval [0,1] to 256 values, from 0 to 255, which
can be represented by one byte of storage without any loss of visual quality. In other words,
one byte (or an 8-bit unsigned integer) is enough to represent all the values of each RGB
component. When we convert from RGB to YCbCr, it only requires one 8-bit unsigned
integer to represent each YCbCr component. This implicitly implies that all conversions
can be done efficiently in integer arithmetic.

5.4 RGBA Color Model

A computer monitor displays different amounts of red (R), green (G), and blue (B) light
at each pixel position. The R, G, and B values form a certain color. These values are
usually packed together and the packed value is referred to as the RGB value. Very often,
an RGB value is packed with another value called alpha value to form the RGBA value.
The alpha («) value is used for color blending and denotes the degree of transparency of
the associated pixel or object. If alpha is 1, the object is opaque and blocks objects behind
it; if alpha is O, the object is totally transparent and cannot be seen; if its value is between
0 and 1, the object is translucent. When initializing an OpenGL program, we can select the
RGB mode with the command

glutInitDisplayMode (GLUT_RGB);
or the RGBA mode using
glutInitDisplayMode (GLUT_RGBA);

In OpenGL, the alpha value has meaning only if we enable color blending which is enabled
by the command

glEnable(GL_BLEND);

The default is that all objects are opaque. We can specify an RGB value or an RGBA value
using

glColor3f(r, g, b);
or
glColor4f(r, g, b, a);

All the values r, g, b, a lie within the range [0, 1]. Thatis, 0 < r, g, b, a < 1. We may also
use array specifications such as

floata[3]={1,1,0 };
glColor3fv(a);

or

floata4[4]={1,1,0,1};
glColordfv(a4);

12 Color Blending

We can assign an OpenGL color specification to individual vertices within the glBegin/glEnd
pairs.

OpenGL represents color information in floating-point format internally. We can specify
color values in integer format, but they will be converted automatically to floating-point
values. For example, we can specify a color with an unsigned byte using the command,

glColordub(0, 255, 0, 1);
which is equivalent to
glColor4f(0.0, 1.0, 0.0, 1.0);

As we have discussed before, our eye can only resolve about 200 values for each of the
primary colors. Therefore, most applications do not need to use other integer formats such
as unsigned int (ui) which is a 32-bit integer format to specify a color component.

5.5 Color Blending

When we render only opaque polygons, the z-buffer for hidden surface removal is enough
to render objects properly. However, when an OpenGL program runs in RGBA mode and
blending is enabled, the alpha (A) value controls how RGB values are written into the
frame buffer; fragments from different objects are combined to form the color of the same
pixel, and we say that we blend or composite these objects together. (A fragment is all
the data in a location of the frame buffer necessary to generate a pixel.) In the blending
process, we combine the color value of the fragment being processed (source color) with
that of the pixel already stored in the frame buffer (destination color). The combined color
is put back to the same pixel location of the frame buffer. The new destination color is
the combination of the old destination color and the source color. This process is shown in
Figure 5-3. Blending occurs after our scene has been rasterized and converted to fragments.

Source -} Blending
Color
_..
Destination
Color

Figure 5-3 Color Blending

The alpha component (A) of an RGBA quantity is a measure of the opacity of a surface,
which is the percentage of light that is blocked by the surface. An opacity of 1 (A = 1)
indicates that the surface is totally opaque and blocks all light incident on it. An opacity
of 0 (A = 0) corresponds to a totally transparent surface where all incident light passes

Chapter 5 Color 13

through it. The transparency or translucency of a surface is 1 - A. Therefore, an alpha
value is meaningful only if it lies within the range [0, 1].

In the rasterization process, polygons are usually rendered one at a time into the frame
buffer. Without blending, each new fragment overwrites any existing color values in the
frame buffer (color buffer), which holds the color for display. With blending, we need to
apply opacity as part of fragment processing. Usually the polygon color that we are work-
ing on is considered as the source color and the color in the color buffer is the destination
color. We combine the two colors using source and destination factors. Suppose we repre-
sent the source (polygon) colors, destination colors, source factors, and destination factors
using 4-tuples (RGBA), Cs, Cy, S and D respectively :

Rs Rd Sr -Dr
Gs G S D
Cs = CCa=| T, s=| |, D=| ¥ (5.23)
Bs Bd Sb Db
A Ay Sa D,
Then the blended color (new destination color) C/, is given by
RSST' + RyD,
s D
Cl = Gy + GaDy (5.24)
B,Sy, + ByDy
As Sa + AdDa

Each component is clamped to [0, 1].

The next question is how to generate the blending factors. OpenGL provides the function
glBlendFunc() to do so. Before using this function, we need to enable blending using the
command

glEnable(GL_BLEND);

(We can disable blending using “glDisable(GL_BLEND);”.) After blending has been en-
abled, we can set up the source and destination factors by the command

glBlendFunc(sourceFactor, destinationFactor);

where sourceFactor and destinatiionFactor are type GLenum. OpenGL defines a
number of blending factors, including the values 1 (GL_ONE) and 0 (GL_ZERO), the source
alpha S, and 1 — S, (GL_.SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA), and the desti-
nation alpha D, and 1 — D, (GL_DST_-ALPHA and GL_ONE_MINUS_DST_ALPHA). Table
5-1 shows the source and destination factors that the function glBlendFunc() can take as
parameters.
We can also specify a (R, G., B¢, A.) using the giBlendColor() function. For exam-
ple, suppose we select GL_.SRC_ALPHA for the source blending factor and GL_.ONE_MINUS_SRC_ALPHA
for the destination blending factor, then the new destination color is given by

:i RSSa + Rd(l - Sa)
!
1—
Cl = Gji _ | Gt Call=50) (5.25)
B, ByS, + Ba(1—S,)
A, AgSq + Aa(l — S,)

Actually, this is one of the most commonly used options in computing the composite color.

14 Color Blending

Note that unlike most OpenGL functions that users do not need to worry about the
order in which polygons are rasterized, the effect of color blending depends on the order of
rendering polygons. The destination and source factors could be interchanged if the order
of rendering two polygons is interchanged.

Table 5-1 Blending Factors

GL Constant Computed Blend Factor
GL_ZERO 0,0,0,0)

GL_ONE 1,1,1,D
GL_DST_COLOR (Ra, Ga, B, Ad)
GL_SRC_COLOR (Rs, Gs, Bs, As)

GL_ONE_MINUS_DST_COLOR | (1, 1, 1,)-(Rq, G4, Ba, Aa)
GL_ONE_MINUS_SRC_COLOR | (1, I, 1, 1)-(Rs, Gs, Bs, As)

GL_SRC_ALPHA (As, As, As, Ag)
GL_ONE_MINUS_SRC_ALPHA | (1, 1, 1, 1)-(As, As, As, As)
GL_DST_ALPHA (Ag, Ag, Ag, Ag)

GL_ONE_MINUS_DST_ALPHA | (1,1, 1, 1)-(Aq, Aa, Ag, Ag)
GL_SRC_ALPHA SATURATE | (f,f,f, 1); f=min(A., 1-Ay)
GL_CONSTANT_COLOR (Re, Ge, Be, Ac)
GL_CONSTANT_ALPHA (Ac, A, A, Ac)

Example 5-1

This example draws two overlapping colored triangles, one red and one green, each with an al-
pha value of 0.8. The background is white. Blending is enabled and the parameters for source
and destination blending factors for the function glBlendFunc() are set to GL_.SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA respectively. When the program starts up, a red triangle is drawn
on the left and then a green triangle is drawn on the right with part of it overlapping with the red
triangle as shown in case (a) of Figure 5-4. Case (b) of Figure 5-4 shows a similar drawing except
that the green triangle is drawn on the left first.

For case (a), when the red triangle is first drawn, its color C» = (1, 0, 0, 0.8), which is the source,
is blended with the background white color C, = (1,1, 1, 1), which is the original destination color
to give the new destination color C'y. In this case, the source blending factor is 0.8 (source alpha),
and the destination blending factor is 0.2 (one minus source alpha). Thus

1x08+1x0.2 1
0x0.8+1x0.2 0.2
Cu= * 0841 x - (5.26)
0x08+1x0.2 0.2
0.8x0.8+1x0.2 0.84

When the green triangle is drawn on the right side, besides the white background, we have three dif-
ferent regions, the nonoverlapping ‘red’ region on the left, the ‘red-green’ overlapping region at the
center and the nonoverlapping ‘green’ region as shown in Figure 5-4(a). The color of the nonover-
lapping ‘red’ region is given by (5.26). Similarly, the color of the nonoverlapping ‘green’ region is
(0.2,1,0.2,0.84). To calculate the color of the overlapping region, we use Cy = (0, 1,0, 0.8) as the
source color and Cq = (1,0.2,0.2,0.84) as the destination color; the new destination color is given

Chapter 5 Color 15

by
0x0.8+1x0.2 0.2
ol _ 1x0.8+0.2x0.2 _ | o84 527
0x0.840.2x0.2 0.04
0.8 x 0.8 4 0.84 x 0.2 0.808

We see that green is the dominant component, followed by red in the overlapping region.
In case (b), the green triangle is drawn first. The color for the overlapping region can be similarly
calcualted:
0.84
c,)’ = 0.04 (5.28)
0.808

In this case, red is the dominant color followed by green.

(a) (b)

Figure 5-4 Color Blending of Example 5-1

The following is the code for this example.

static void init (void)
{
glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ;
glShadeModel (GL_FLAT);
glClearColor (1.0, 1.0, 1.0, 1.0);
}

static void triangle(float color[4])
{
glColor4fv(color);
glBegin (GL_TRIANGLES) ;
glVertex3f (-2, -1.9, 0.0);
glvVertex3f(-1, -0.9, 0.0);
glvertex3f(-2, 0, 0.0);
glEnd();
}

void display (void)
{
glClear (GL_COLOR_BUFFER_BIT) ;
glOortho (-2.2, 2.2, -2.2, 2.2, -2.0, 10.0);

16 Color Blending

//draw red triangle first, then green
float red(4] = { 1, 0, 0, 0.8};
triangle(red);
glTranslatef(0.5,
float green[4] = {
triangle(green);

0, ;
0, 1, 0, 0.8};

//draw green triangle first, then red
glTranslatef(1.2, 0, 0);

triangle (green);
glTranslatef(0.5, 0, 0);
triangle (red);
glFlush{();

}

Note that when we enable blending, we usually do not enable hidden surface removal.
This is because objects behind any object already rendered would not be rasterized and thus
its color would not combine with the frame buffer color. If a scene consists of both opaque
and transparent objects, any object behind and opaque one should not be rendered, but
translucent objects in front of opaque objects should be composited. A simple solution to
this problem is to enable hidden-surface removal as usual and make the z buffer read-only
for any object that is translucent. This can be done using the command

glDepthMask(GL_FALSE);

When the z buffer is read-only, a translucent object lying behind any opaque object already
rendered is discarded. On the other hand, a translucent object lying in front of a rendered
opaque object will be blended; however, as the z buffer is read-only, the depth value in
the buffer will not be changed. When we render opaque objects, we set the depth mask to
true (so that the z buffer is writable) and render them as usual. In summary, when drawing
translucent objects, we enable depth buffering but make the depth buffer read-only and
draw the objects in the following order:

1. First draw all opaque objects, with depth buffer in normal operation.

2. Preserve the depth values by making depth buffer read-only.

3. Draw the translucent objects only if they are in front of the opaque ones, and blend
them with the opaque ones.

Finally, one should note that in some systems, the hardware frame buffer may not fully
support blending and the blending result may not be exactly the same as what we expect.

Chapter 5 Color

17

18 Color Blending

Other books by the same author

Windows Fan, Linux Fan

by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth. See http://www.forejune.com/

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

Chapter 5 Color 19

An Introduction to Digital Video Data
Compression in Java

by Fore June

The book describes the the principles of digital video data compression techniques and its

implementations in java. Topics covered include RBG-YCbCr conversion, macroblocks,

DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-

coding, motion estimation, motion compensation and hybrid coding. See
http:/fwww.forejune.com/

January 2011

ISBN-10: 1456570870

ISBN-13: 978-1456570873

An Introduction to Video Compres-
sion 1n C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

	Chapter 5 Color
	5.1 Color Spaces
	5.2 RGB Color Model
	5.3 Color Systems
	5.3.1 The XYZ Color Model
	5.3.2 YUV Color Model
	5.3.3 YCbCr Color Model

	5.4 RGBA Color Model
	5.5 Color Blending

