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Chapter 6 Depth Test and OpenGL Buffers

6.1 Buffers

We briefly mentioned in previous chapters two types of standard buffers, depth buffers and
color buffers, which are most commonly used. Depth buffers are also referred to as z
buffers. In graphics, we can generally consider a buffer as a block of memory arranged in
the form of a two-dimensional array with size m×n with each location corresponding to a
pixel position of the screen. Each memory location may save a k-bit datum. For example,
in RGBA mode, very often an RGBA value is 32-bit as 8-bit is required to save the value
for each of the red, green, blue and alpha components. Therefore, an RGBA color buffer
location stores a 32-bit value (i.e. k = 32). Similarly, for RGB display, k is 24. For
the z buffer, its k is determined by the depth precision the graphics system supports; very
often, it is 32 bits which is the size of a floating point number or an integer in most C/C++
programs. We refer to any of the k n×m one-bit ‘planes’ in a buffer as a bitplane. The k
bit datum at a particular buffer location describes a pixel shown on the screen.

In general, OpenGL supports a number of different types of buffers including,

1. Color buffers: front-left, front-right, back-left, back-right, and any number of auxil-
iary color buffers

2. Depth buffer
3. Accumulation buffer
4. Stencil buffer

The buffers are collectively known as frame buffer in OpenGL. When we work with the
frame buffer, we usually work with one of the above buffers at a time. Therefore, when
we use the term buffer, we refer to one particular buffer listed above, which is a constituent
of the frame buffer. Exactly what kind of buffers and what value of k is used in a system
is determined by the particular OpenGL implementation used. We may use the function
glGetIntegerv() to query the OpenGL system about the storage information of each buffer
location. For example, the following code queries the number of bits used to specify a
depth value; the number is returned in the variable depth:

int depth;
glGetIntegerv ( GL_DEPTH_BITS, &depth );

The general syntax of this command is

void glGetIntegerv(GLenum pname, GLint *p);

where pname specifies the parameter value (see Table 6-1) to be returned and p points to the
memory location that the value or values will be returned. Other commands that perform
the same task but operate on different data types include

glGetBooleanv(), glGetDoublev(), and glGetFloatv().

Table 6-1 lists the parameters that can be used with glGetIntegerv() to query the bits-
per-pixel information of an OpenGL system. If we know the internal format of how data
are stored in any of the buffers, we can often write applications that run more efficiently.
Moreover, this knowledge helps us encode the image data into some standard image formats
such as PNG, GIF and JPEG formats.
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Table 6-1 Parameters for glGetIntegerv() to Query Per-Pixel Buffer Storage

Parameter Meaning
GL RED BITS, GL GREEN BITS,
GL BLUE BITS, GL ALPHA BITS

Number of bits per R, G, B, or A
component in the color buffers

GL INDEX BITS Number of bits per index in color buffers
GL DEPTH BITS Number of bits per pixel in depth buffer
GL STENCIL BITS Number of bits per pixel in stencil buffer
GL ACCUM RED BITS,
GL ACCUM GREEN BITS,
GL ACCUM BLUE BITS,
GL ACCUM ALPHA BITS

Number of bits per R, G, B, or A
component in the accumulation buffer

Color Buffers

The color buffers are the ones to which we store the color data for each pixel. They
contain color-index, RGB or RGBA color data. If an OpenGL implementation supports
double-buffering, the color buffers consist of front and back buffers. On the other hand, a
single-buffered system only has the front buffer. If the system also supports stereoscopic
viewing, the color buffers will have left and right buffers for the left and right stereo images.
If stereo is not supported, only the left buffer is used. Every OpenGL implementation must
provide a front-left color buffer.

Some implementations may also support nondisplayable auxiliary color buffers. OpenGL
does not specify any particular uses for these buffers, so we can define and use them in our
own way.

We can use the parameters GL STEREO or GL DOUBLEBUFFER for glGetBooleanv()
to find out whether our system supports stereo or double-buffering, and use parameter
GL AUX BUFFERS to find out how many auxiliary buffers are present.

Depth Buffer

The depth buffer is also called z buffer. It stores a depth value (z coordinate) for each
pixel. It is used to remove any hidden-surface in the scene. We usually measure depth in
terms of distance to the viewpoint, so pixels with larger depth-buffer values are overwritten
by pixels with smaller values.

Accumulation Buffer

The accumulation buffer is simply an extra image buffer that is used to accumulate com-
posite images. It is typically used for accumulating a series of images into a final, composite
image to create some special graphics effects such as antialiasing, depth-of-field, and mo-
tion blur. We shall use this buffer to create stereoscopic images by accumulating images for
the left and right eyes. The accumulation buffer stores RGBA color data just like the color
buffers do in RGBA mode. Actually, we do not draw directly into the accumulation buffer;
accumulation operations are always performed in rectangular blocks, usually transferring
data to or from a color buffer.
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Stencil Buffer

The data in a stencil buffer do not represent colors or depths but have application-specific
meanings. Unlike the data of a color buffer, the stencil buffer data are not directly visible.
By calling the stencil function and the stencil operations, we can change the bits in the
stencil planes. We can also use the stencil function along with a stencil test to control
whether we want to discard a fragment. Also we can make use of the stencil operation to
determine how we update the stencil planes.

A common use for the stencil buffer is to restrict drawing to certain portions of the
screen. For example, if we want to draw an image as it would appear through a window of
a train, we can store an image of the window’s shape in the stencil buffer, and then draw the
entire scene. The stencil buffer prevents anything that are not visible through the window
from being drawn. Therefore, if our application is a simulation of a running train, we can
draw all the items inside the train only once, and as the train moves, we only need to update
the outside scene. Another example of application is the use of stencil buffer to define a
shadow volume in in the process of creating shadows; we only shadow objects within the
shadow volume.

Clearing Buffers

It is always computing-expensive to clear the screen or a constituent of the frame buffer.
To clear a 512 × 512 RGBA color buffer requires clearing a memory of more than one
million bytes. It may take more time to clear a buffer than computing the drawing of the
scene in a simple graphics application. Very often, a machine has special hardware to
handle the buffer-clearing process.

OpenGL provides a number of functions to specify values to clear the buffers:

void glClearColor(float red, float green, float blue, float alpha);
void glClearIndex(float index);
void glClearDepth(double depth);
void glClearStencil(int s);
void glClearAccum(float red, float green, float blue, float alpha);

The above functions are for clearing the color buffer in RGBA mode, the color buffer in
color-index mode, the depth buffer, the stencil buffer, and the accumulation buffer respec-
tively with the values specified by the parameters passed to their arguments. The color
values are clamped to be between 0.0 and 1.0. The default clearing values for the func-
tions are 0 except the depth-clearing value which is defaulted to 1.0. The actual clearing
occurs when the command glClear() is executed with the specified buffer. For example,
the commands,

glClearColor( 1.0, 1.0, 1.0, 0 );
glClear(GL COLOR BUFFER BIT);

will fill the color buffer with white color values.

6.2 Depth Test

When rendering a graphics scene, we do not want to display a fragment which is from
an object behind another opaque object. The elimination of parts of solid objects that are
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obscured by others is called hidden-surface removal. Back face culling is also a form of
hidden-surface removal. From another point of view, hidden-surface removal is to discover
what part of a surface is visible to the viewer and thus the process is also referred to as
visible-surface determination. There are two approaches to do this. One approach is to
use visible-surface algorithms to find the surfaces that are visible. The other approach is to
use hidden-surface-removal algorithms to remove those surfaces that should not be visible
to the viewer, and there are two types of such algorithms:

1. Object-space algorithms attempt to order the surfaces of the objects in the scene
according to their distances from the viewer so that drawing surfaces in a particular
order provides the correct image. These algorithms may not work well with pipeline
architectures. The painter’s algorithm is an example of such algorithms. It works
as follows:

(a) First draw the objects that are farthest from the viewpoint.
(b) Continue to draw objects from far to near and draw the closest objects last.
(c) Objects drawn later overwrite those drawn earlier at the same location of the

projection plane just like the way we paint. Consequently, the nearer objects
will obscure the farther objects as we draw from far to near.

Painter’s algorithm is very simple and there are variants of it. The problem of this al-
gorithm is that objects must be drawn in a particular order based upon their distances
from the viewpoint. If the viewing position is changed, the drawing order must be
changed.

2. Image-space algorithms work as part of the projection process. Such an algorithm
finds the relationship among object points in each projection step. This works well
with pipeline architectures.
The z-buffer algorithm is the most commonly used algorithm of this type. OpenGL
also uses the z-buffer algorithm to remove hidden surfaces. The feature is enabled
by the command:

glEnable ( GL DEPTH TEST );

6.2.1 The z-Buffer Algorithm

Because of its ease of implementation and fitting naturally with pipeline architectures, the
z-buffer algorithm is the most widely used hidden-surface removal algorithm. The algo-
rithm uses a depth or z buffer to keep track of the distance from the projection plane to each
point of the object. For each pixel position, the frame buffer only retains the point of the
surface that has the smallest z coordinate. Very often, the depth or z values are normalized
to values in the range [0, 1]. During the rendering process, the depth-buffer value (normal-
ized z coordinate) d[i][j] contains the depth of the closest object rendered so far at that
pixel. As the rendering process proceeds pixel by pixel across a scanline and fills the face
of the current polygon, the algorithm tests whether the depth of current point of the face
is less than the depth d[i][j] stored in the depth-buffer at the corresponding location. If so,
the color of the point of the closer surface replaces the color c[i][j] of the color buffer, and
this smaller depth replaces the old value in d[i][j], otherwise no replacement takes place.
Polygons and other graphics primitives such as lines and points can be drawn in any order.
The following is the algorithm in detail:

1. Clear the color buffer to the background color.
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2. Initialize the values at all locations of the depth buffer to 1.
3. For each fragment of each surface, compare depth values to those already stored in

the depth buffer:

(a) Calculate the distance from the projection plane for each xy position on the
surface.

(b) Normalize the distance to [0, 1], which is the depth value of the fragment.
(c) If the distance is less than the value currently stored in the depth buffer,

i. set the corresponding position in the color buffer to the color of the frag-
ment,

ii. set the value in the depth buffer to the distance to that object,
otherwise

leave the color and depth buffers unchanged.

Note that specialized hardware depth buffers are much faster than software buffers, and
the number of bitplanes associated with the depth buffer determines the depth precision or
resolution.

6.2.2 OpenGL z-Buffering

OpenGL uses z-buffering for hidden-surface removal. As we have mentioned above, the z
buffer is also referred to as depth buffer. Since using a depth buffer means we need a lot of
extra memory, we have to inform OpenGL our request of the extra memory. This can be
done in the initialization steps using a command like the following:

glutInitDisplayMode ( GLUT DOUBLE | GLUT RGB | GLUT DEPTH );

Before using the depth buffer, we must enable it and clear it. Very often, we clear the depth
buffer whenever we clear the color buffer. This is done by the command,

glClear ( GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

Depth test is enabled by

glEnable ( GL DEPTH TEST );

and disabled by

glDisable ( GL DEPTH TEST );

We use the function glDepthFunc() to set the comparison function for the depth test.
This function specifies the function used to compare each incoming pixel depth value with
the depth value present in the depth buffer. The comparison is performed only if depth
testing is enabled. Its syntax is as follows:

void glDepthFunc (GLenum func );

where func specifies the comparison function, which may be
GL NEVER, GL ALWAYS, GL LESS, GL LEQUAL, GL EQUAL, GL GEQUAL,
GL GREATER, or GL NOTEQUAL

For example, when func is GL GEQUAL, the depth test passes if the incoming pixel depth
value is greater than or equal to the stored depth value. The default of func is GL LESS.
Initially, depth testing is turned off (disabled). If depth testing is disabled or if no depth
buffer exists, the program works as if the depth test always passes. Table 6-2 lists all the
valid values of func and their meanings.
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Table 6-2 Valid Parameters for glDepthFunc()

func Depth Test
GL NEVER Never passes.
GL LESS Passes if the incoming depth value is less than

the stored depth value.
GL EQUAL Passes if the incoming depth value is equal to

the stored depth value.
GL LEQUAL Passes if the incoming depth value is less than or

equal to the stored depth value.
GL GREATER Passes if the incoming depth value is greater than

the stored depth value.
GL NOTEQUAL Passes if the incoming depth value is not equal to

the stored depth value.
GL GEQUAL Passes if the incoming depth value is greater than or

equal to the stored depth value.
GL ALWAYS Always passes.

We can turn on depth buffering by

glEnable( GL DEPTH TEST );

and turn it off by

glDisable( GL DEPTH TEST );

Each time prior to drawing the scene, we clear the depth buffer when we clear the color
buffer in the display callback:

glClear ( GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT | ... );

We usually use a single glClear command to clear all buffers.
If necessary, we may change the depth range so that z values may lie in a range other

than [0, 1]. This is done using

void glDepthRange( GLclampd near, GLclampd far );

where near and far specify the minimum and maximum values that can be stored in
the depth buffer. By default, near and far are 0.0 and 1.0 respectively. The data type
Glclampd specifies a floating-point (double) value clamped to [0, 1].

We can also enable or disable writing to the depth buffer using the following command:

void glDepthMask( GLboolean flag );

where flag specifies whether the depth buffer is enabled for writing:

• GL TRUE enables writing
• GL FALSE disables writing

Writing is enabled by default. When writing is disabled, the depth buffer is read-only; its
value will not be changed after a depth test.

We can similarly use the function glColorMask() to enable or disable the writing of a
color component to the color buffer:

void glColorMask(GLboolean rflag, GLboolean gflag, GLboolean bflag,
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GLboolean aflag);

The parameters rflag, gflag, bflag, and aflag are flags specifing whether red, green,
blue, and alpha color components can or cannot be written into the color buffer. For exam-
ple, if bflag is GL FALSE, no change is made to the blue component of any pixel in any
of the color buffers, regardless of the drawing operation we have used. Note that we cannot
control changes to individual bits of components. Rather, changes are either enabled or
disabled for entire color components. The initial values of all the flags are GL TRUE, in-
dicating that we can write the color components to the buffer. Making use of this function,
we can easily create a red-blue stereoscopic pair of images; when creating the red image,
we enable only the writing of the red component and when creating the blue image, we
enable only the writing of the blue component. We shall have more detailed discussions
and examples on this in later chapters.

6.3 Writing to Buffers

We have learned the principles and usage of the buffers in OpenGL. In an application,
we may want to read and write into the buffers directly and we would like to do these
efficiently. OpenGL provides a few functions to transfer data to and from these buffers in
large chunks.

In general, we call a frame buffer with one bit per pixel a bitmap, and a frame buffer
with multiple bits per pixel a pixmap. We also use these terms to describe other rect-
angular arrays; we may refer to any pattern of binary values as a bitmap, and multicolor
pattern as a pixmap. Specifications for a pixel array may consist of a pointer to the color
matrix, the size of the matrix, and the position and size of the screen area involved in the
data reading or writing. Figure 6-1 shows an example of data transfer of an m × n block
of pixels from a source buffer to another buffer, the destination buffer. Sometimes the
source buffer and the destination buffer can be the same constituent of the frame buffer.

In Figure 6-1, the operation writes an m× n source block whose lower-left corner is at
(x0, y0) to the destination buffer starting at a location (u0, v0). The transfer of the entire
block is usually performed by a single function call in the following form:

writeBlock ( source, x0, y0, destination, u0, v0, m, n );

where source and destination points to the memory locations of the source and destina-
tion blocks respectively.

In OpenGL, the commands that perform block data transfer include glReadPixels(),
glDrawPixels(), glCopyPixels(), and glBitmap(). Some commands require the functions
glRasterPos*() to help specify the frame buffer location that the data are read from or
written to. We discuss these functions below.
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•

Sourcem

n(x0, y0)

•(x, y)

•

Destinationm

n(u0, v0)

•(u, v)

Memory

Figure 6-1 Transfer of an m× n Block of Data

6.3.1 OpenGL Pixel-Array Function

OpenGL provides a bitmap function and a pixmap function to define a shape or pattern
specified by a rectangular array. Also, OpenGL provides several other functions for saving,
copying, and manipulating arrays of pixel values.

Bitmap Function

The OpenGL functions glRasterPos*() and glBitmap() specify the position and draw
a single bitmap on the screen. The commands glPasterPos*() specify the current raster
position which is the origin where the next bitmap is to be drawn. The suffix codes and
parameters are the same as those for the glVertex functions. Therefore, a current raster
position is specified in world coordinates, and it is transformed to screen coordinates by
the modelview and projective transformations. The color for the bitmap is the color that is
in effect when the glRasterPos command is invoked. Any subsequent color changes do not
affect the bitmap. Once we have set the desired raster position, we can use the glBitmap()
function to draw the scene specified by the data passed to the function:

void glBitmap ( GLsizei width, GLsizei height, GLfloat x0, GLfloat y0,
GLfloat xi, GLfloat yi, const GLubyte *bitmap);

where bitmap is a pointer to the bitmap image to be drawn. The origin of the bitmap image
is at the current raster position. If the current raster position is invalid, nothing is drawn
or changed. We use the arguments width and height to specify the width and height, in
pixels, of the bitmap image. i We use the parameters x0 and y0 to define the origin of the
bitmap image relative to the current raster position; a positive x0 shifts the origin right and
a positive y0 shifts it upwards relative to the raster position. Negative values shift it down
and left. Parameters xi and yi specify the x and y increments that are added to the raster
position after the bitmap has been rasterized. This means that xi and yi are measured in
pixels rather than world coordinates. After the bitmap image has been drawn, the current
raster position is advanced by xi and yi in the x and y directions respectively. Figure 6-2
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below shows an example illustrating these parameters, with width = 10, height = 12,
(x0, y0) = (0, 0), and (xi, yi) = (11, 0); each square represents a pixel.

Figure 6-3 shows an example of a bitmap which is the image pattern of an upward
arrow. In this example, the width is 9 pixels and the height is 10 pixels. The image is saved
in a rectangular bit array where each row of it is stored in multiples of 8 bits (16 here)
and the binary data are arranged as a set of 8-bit unsigned characters. When this image
pattern is applied to the pixels in the frame buffer, all bit values beyond the 9-th column
are ignored. Suppose we are going to draw this bitmap and that the current raster color is
green. Wherever there is a 1 in the bitmap, the corresponding pixel is replaced by a green
pixel. If there is a 0 in the bitmap, the contents of the pixel are unaffected. Therefore, an
upward arrow will be drawn using this bitmap. Actually, the most common use of bitmaps
is for drawing characters on the screen.

Figure 6-2 Bitmap Image

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0

0x1c 0x00
0x1c 0x00
0x1c 0x00
0x1c 0x00
0x1c 0x00
0xff 0x80
0x7f 0x00
0x3e 0x00
0x1c 0x00
0x08 0x00

0 8 11 15
0

9

Figure 6-3 10× 9 Bit Pattern Saved in 10× 16 Block

We can display the arrow image of Figure 6-3 by applying the bit pattern to a frame
buffer location with the following code:

void display(void)
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho (-1.0, 1.0, -1.0, 1.0, -10.0, 10.0);
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glClearColor (1.0, 1.0, 1.0, 0.0);
glClear (GL_COLOR_BUFFER_BIT );
glColor4f(0, 0, 0, 0);
GLubyte arrow[20] = {0x1c, 0x00, 0x1c, 0x00, 0x1c, 0x00,

0x1c, 0x00, 0x1c, 0x00, 0xff, 0x80,
0x7f, 0x00, 0x3e, 0x00, 0x1c, 0x00,
0x08, 0x00};

//set pixel storage mode, byte-alignment
glPixelStorei(GL_UNPACK_ALIGNMENT,1);
glRasterPos2f( 0.1, 0.2 );
glBitmap ( 9, 10, 0, 0, 20, 30, arrow );
glBitmap ( 9, 10, 0, 0, 20, 30, arrow );
glBitmap ( 9, 10, 0, 0, 20, 30, arrow );

}

In the above code, we specify the array values for arrow row by row, starting at the bot-
tom of the rectangular-grid pattern as shown in Figure 6-3. We set the storage mode of the
bitmap using the the function glPixelStorei(). The parameter GL UNPACK ALIGNMENT
specifies the alignment requirements for the start of each pixel row in memory. The allow-
able values are 1 (byte-alignment), 2 (rows aligned to even-numbered bytes), 4 (word-
alignment), and 8 (rows start on double-word boundaries). We have used the value 1 in
the code. Thus, the data values are to be aligned on byte-boundaries. We use the function
glRasterPos2f() to set the current raster position to (0.1, 0.2), which are in world coor-
dinates. The parameters to the function glBitmap() indicate that the bit pattern is given
in the array arrow, and that this array has 9 columns (width) and 10 rows (height). The
location of this pattern in the block is (0, 0), which is the lower left corner of the grid. We
illustrate a raster position increment with values (20, 30) which are the offset between two
successive arrows drawn; after each call to the function glBitmap(), the raster position is
incremented by this amount in pixels. Therefore, the code displays three arrows, each with
displacement (20, 30) relative to the preceding one. Figure 6-4 shows the output of the
code.

Figure 6-4 Output Of Bitmap Example Code

Pixmap Function

A pixmap is a general image which is similar to a bitmap, but instead of containing
only a single bit for each pixel in a rectangular region of the screen, a pixmap can contain
much more information such as a complete (R, G, B, A) color of each pixel. The image
sources of a pixmap include the following,

1. a photo image that is taken by a digital camera,
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2. a photograph that is digitized with a scanner,
3. an image that was first generated on the screen by a graphics program using the

graphics hardware. and then read back, pixel by pixel, and
4. a software program that generates the image in memory pixel by pixel.

OpenGL provides three functions for manipulating image data:

1. glReadPixels () – Reads a rectangular array of pixels from the frame buffer and
stores the data in processor memory.

2. glDrawPixels() – Writes a rectangular array of pixels from data kept in processor
memory into the frame buffer at the current raster position specified by glRaster-
Pos*().

3. glCopyPixels() – Copies a rectangular array of pixels from one part of the frame
buffer to another. This function behaves similarly to a call to glReadPixels() fol-
lowed by a call to glDrawPixels(), except that the data are never written into proces-
sor memory.

Figure 6-5 shows the OpenGL pixel data flow and the tasks of these functions.

Processor
Memory Rasterization

Per-
Fragment

Operations

Frame
Buffer

Per-Vertex
Operations

glDrawPixels

glRasterPos*

glCopyPixels

glReadPixels

Figure 6-5 Pixel Data Flow

6.3.2 Pixel Data Block Transfer

The three pixmap functions discussed above provide an efficient way to transfer data be-
tween the processor memory and the frame buffer in large blocks. The following shows
more details of these functions.

void glReadPixels(GLint x0, GLint y0, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid *pixels);

Reads pixel data from the framebuffer rectangle whose lower-left corner is at (x0, y0)
in screen coordinates (pixels) and whose dimensions are width and height and
stores it in the array pointed to by pixels. Parameter format indicates the kind
of pixel data elements that are read (an index value or an R, G, B, or A component
value, as listed in Table 6-1 below), and type indicates the data type of each element
shown below.

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid *pixels);
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Draws a rectangle of pixel data with dimensions width and height. The pixel rect-
angle is drawn with its lower-left corner at the current raster position. Parameters
format and type have the same meaning as with glReadPixels(). The array pointed
to by pixels contains the pixel data to be drawn.

void glCopyPixels(GLint x0, GLint y0, GLsizei width, GLsizei height,
GLenum buffer);

Copies pixel data from the frame buffer rectangular region whose lower-left corner
is at (x0, y0) and whose dimensions are width and height. The data are copied to
a new position whose lower-left corner is given by the current raster position. Pa-
rameter buffer is either GL COLOR, GL STENCIL, or GL DEPTH, specifying the
frame buffer that is used. glCopyPixels() behaves similarly to a glReadPixels() fol-
lowed by a glDrawPixels(), with the following translation for the buffer to format
parameter:

• If buffer is GL DEPTH or GL STENCIL, then GL DEPTH COMPONENT or
GL STENCIL INDEX is used respectively.
• If GL COLOR is specified, then GL RGBA or GL COLOR INDEX is used,

depending on whether the system is in RGBA or color-index mode.

Table 6-1 Pixel Formats for glReadPixels() or glDrawPixels()
Format Constant Pixel Format

GL COLOR INDEX A single color index
GL RGB Red, green, blue color components
GL RGBA Red, green, blue, alpha color components
GL RED A single red color component
GL GREEN A single green color component
GL BLUE A single blue color component
GL ALPHA A single alpha color component
GL LUMINANCE A single luminance component
GL LUMINANCE ALPHA A luminance component followed by an alpha
GL STENCIL INDEX A single stencil index
GL DEPTH COMPONENT A single depth component

Example 6-1

This example presents a code section shown below that displays a 16 × 16 checker
board of alternate black and white squares on the screen. Each black or white square is
16 × 16 pixels. It uses glDrawPixels() to draw a pixel rectangle in the lower-left corner
of a window. The function getBoard() creates a 256 × 256 RGBA array representing the
black-and-white checker board image. The function call glRasterPos2i(0,0) positions the
lower-left corner of the image at the origin of the world coordinate system. The output of
this code is shown in Figure 6-6.

const int width = 256, height = 256;
unsigned char board[width][height][4];

//create checker board image
void getBoard(void)
{

int c;

for ( int i = 0; i < width; i++ ) {
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for ( int j = 0; j < height; j++ ) {//start from lower-left corner
c = ((((i&16)==0)ˆ((j&16))==0))*255; //0 or 255-->black or white
board[i][j][0] = c; //red component
board[i][j][1] = c; //green component
board[i][j][2] = c; //blue component

}
}

}

//initialization
void init(void)
{

glClearColor (0.8, 0.8, 1.0, 1.0);
glShadeModel(GL_FLAT);
getBoard(); //create checker image array
//Sets pixel-storage mode: byte-aligned
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

}

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0, 0);
glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, board);
glFlush();

}

Figure 6-6 Output of Code of Example 6-1

6.4 Displaying and Saving Images

OpenGL does not provide functions to handle images in standard formats such as PNG,
JPEG, TIFF, GIF, and PPM. This is because there exists too many proprietary image and
video file formats, each with clear strengths and weaknesses. The file formats are generally
not a user-defined option and many of the features are specified by the vendors. Because
of the lack of OpenGL support, we have to write our own routines to read image data from
files to the frame buffer or to take images formed in the frame buffer and save them in a
standard format. We are certainly interested in exploring all the file formats. Often, we
may use some open-source libraries to process the images. As an illustration of the basic
ideas of OpenGL pixel functions, here we develop our own simple routines that read and
write data in the PPM format, which is the simplest of all image formats. We shall also
discuss a couple of simple standard formats and some related tools that can convert from
one format to the other.
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6.4.1 Portable Pixel Map (PPM)

The Portable Pixel Map ( PPM ) file format is a lowest and simplest common denominator
color image format. A PPM file contains very little information about the image besides
basic colors and the data are not compressed. Therefore, it is easy to write programs to
process the file, which is the purpose of this format. A PPM file consists of a sequence
of one or more PPM images. There are no data, delimiters, or padding before, after, or
between images. The PPM format closely relates to two other bitmap formats, the PBM
format, which stands for Portable Bitmap ( a monochrome bitmap ), and PGM format,
which stands for Portable Gray Map ( a gray scale bitmap ). All these formats are not
compressed and consequently the files stored in these formats are usually quite large. In
addition, the PNM format means any of the three bitmap formats. You may use the unix
manual command man to learn the details of the PPM format:

$man ppm
The three bitmap formats can be stored in two possible representations:

1. an ASCII text representation (which is extremely verbose), and
2. a binary representation (which is comparatively smaller).

Each PPM image consists of the following (taken from unix ppm manual):

1. A “magic number” for identifying the file type. A ppm image’s magic number is the
two characters “P6”.

2. Whitespace (blanks, TABs, CRs, LFs).
3. A width, formatted as ASCII characters in decimal.
4. Whitespace.
5. A height, again in ASCII decimal.
6. Whitespace.
7. The maximum color value (Maxval), again in ASCII decimal. Must be less than

65536 and more than zero.
8. Newline or other single whitespace character.
9. A raster of Height rows, in order from top to bottom. Each row consists of Width

pixels, in order from left to right. Each pixel is a triplet of red, green, and blue
samples, in that order. Each sample is represented in pure binary by either 1 or 2
bytes. If the Maxval is less than 256, it is 1 byte. Otherwise, it is 2 bytes. The most
significant byte is first. A row of an image is horizontal. A column is vertical. The
pixels in the image are square and contiguous.

10. In the raster, the sample values are “nonlinear”. They are proportional to the intensity
of the ITU-R Recommendation BT.709 red, green, and blue.

In summary, a PPM file has a header and a body, which may be created using a text editor.
The header is very small with the following properties:

1. The first line contains the magic identifier “P3” or “P6”.
2. The second line contains the width and height of the image in ascii code.
3. The last part of the header is the maximum color intensity integer value.
4. Comments are preceded by the symbol #.

Here are some header examples:

Header example 1
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P6 1024 788 255

Header example 2

P6
1024 788
# A comment
255

Header example 3

P3
1024 # the image width
788 # the image height

# A comment
1023

The following is an example of a PPM file in P3 format.

P3
# feep.ppm
4 4
15
0 0 0 0 0 0 0 0 0 15 0 15
0 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0
15 0 15 0 0 0 0 0 0 0 0 0

You can simply use a text editor to create it; for example, copy-and-paste the content
into a file named “feep.ppm”, which then becomes a PPM file and can be viewed by a
browser or the unix utility xview. When you execute the unix command,

$ xview feep.ppm

you should see a tiny image appear on the upper left corner of your screen along with the
following messages displayed in the console,

feep.ppm is a 4x4 PPM image with 16 levels
Building XImage...done

6.4.2 The Convert Utility

Once we obtain an image in PPM format, we can easily convert it to other popular formats
such as PNG, JPG, or GIF using the convert utility, which is a member of the ImageMagick
suite of tools. Conversely, if you obtain an image from other sources in another format, you
may also use convert to convert it to the PPM format. Besides making conversion between
image formats, the utility can also resize an image, blur, crop, despeckle, dither, draw on,
flip, join, re-sample, and do much more. It can even create an image from text. We use the
unix manual command to see the details of its usage:

$ man convert
We can also run ‘convert -help’ to get a summary of its command options. The following
are some simple examples of its usage.
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$convert feep.ppm feep.png
$convert house.jpg house.ppm
$convert house.jpg -resize 60% house.png
$convert -size 128x32 xc:transparent -font \

Bookman-DemiItalic -pointsize 28 -channel RGBA \
-gaussian 0x4 -fill lightgreen -stroke green \
-draw "text 0,20 ’Freedom’" freedom.png

The last command creates a PNG ( Portable Network Graphics ) file named “freedom.png”
from the text “Freedom”. Figure 6-7 shows the image thus created.

Figure 6-7 Image Created by convert

If you want to convert a PDF file to PPM, you may use the utility pdftoppm. You may
run “pdftoppm –help” to find out the details of its usage.

6.4.3 Read and Write PPM Files

To process any PPM and related graphics file, you may use the the netpbm library (
http://netpbm.sourceforge.net ), which can be downloaded from the Internet. However,
for the purpose of this book, we just need something very simple to read or write a PPM
file. In this section, we present a simple C program that shows how to read or write a PPM
file.

The C/C++ program shown in Listing 6-1 briefly demonstrates the reading and writing
of PPM files; the file names and some parameters are hard-coded; the class CImage with
public members red, green, and blue is used to save the color data of one pixel. In a C++
program, a public class is the same as a C struct.

Program Listing 6-1 Read and Write PPM Files
——————————————————————————————————-

/* ppmdemo.cpp

* Demostrate read and write of PPM files.

* Compile: g++ -o ppmdemo ppmdemo.cpp

* Execute: ./ppmdemo

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//A public class is the same as a ’struct’
class CImage {
public:

unsigned char red;
unsigned char green;
unsigned char blue;

};

// Create PPM header from image width and height. "P6" format used.
// PPM header returned in integer array ppmh[].
void make_ppm_header ( int ppmh[], int width, int height )
{
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//standard header data, ’P’ = 0x50, ’6’ = 0x36, ’\n’ = 0x0A
int ca[] = {0x50, 0x36, 0x0A, //"P6"

//image width=260, height = 288
0x33, 0x36, 0x30, 0x20, 0x32, 0x38,

//color levels / pixel = 256
0x38, 0x0A, 0x32, 0x35, 0x35, 0x0A };

//only have to change width and height
char temp[10], k;

sprintf(temp, "%3d", width ); //width in ascii code
k = 0;
for ( int i = 3; i <= 5; ++i ) //replace width

ca[i] = temp[k++];

sprintf(temp, "%3d", height ); //height in ascii code
k = 0;
for ( int i = 7; i <=9; ++i ) //replace height

ca[i] = temp[k++];

for ( int i = 0; i < 15; ++i ) //form header
ppmh[i] = ca[i];

}

void save_ppmdata (FILE *fp, CImage *ip, int width, int height)
{

int size = width * height;
for ( int i = 0; i < size; ++i ){

putc ( ip[i].red, fp );
putc ( ip[i].green, fp );
putc ( ip[i].blue, fp );

}
}

void ppm_read_comments ( FILE *fp )
{

int c;
while ( (c = getc ( fp ) ) == ’#’ ) {

while ( getc( fp ) != ’\n’ )
;

}
ungetc ( c, fp );

}

class ppm_error
{

public:
ppm_error() {

printf("\nIncorrect PPM format!\n");
exit ( 1 );

}
};

int main()
{

int ppmh[20]; //PPM header
int width = 32, height = 32; //image width and height
make_ppm_header ( ppmh, width, height );
//PPM file for testing read
FILE *input = fopen("testread.ppm", "rb");
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//PPM file for testing write
FILE *output = fopen ("testwrite.ppm", "wb");

//write demo
for ( int i = 0; i < 15; ++i ) //save PPM header

putc ( ppmh[i], output );

CImage image[width][height];
for ( int i = 0; i < height; ++i ) { //create a red rectangle

for ( int j = 0; j < width; ++j ) {
image[i][j].red = 255; //red component
image[i][j].green = 0; //green component
image[i][j].blue = 0; //blue component

}
}
save_ppmdata ( output, (CImage*) image, width, height );
printf("\nPPM file testwrite.ppm created!\n");
fclose ( output );

//read demo
ppm_read_comments ( input ); //read comments
char temp[100];
fscanf ( input, "%2s", temp );
temp[3] = 0;
if ( strncmp ( temp, "P6", 2 ) )

throw ppm_error();
ppm_read_comments ( input );
fscanf ( input, "%d", &width );
ppm_read_comments ( input );
fscanf ( input, "%d", &height );
ppm_read_comments ( input );
int colorlevels;
fscanf ( input, "%d", &colorlevels );
printf("\n%s PPM file: ", temp );
printf(" \n\twidth=%d\theight=%d\tcolorlevles=%d\n",

width,height,colorlevels+1 );
ppm_read_comments ( input );
while (( c = getc ( input )) == ’\n’); //get rid of extra returns
ungetc ( c ,input );

//save the data in another file
CImage ibuf[width][height];
fread ( ibuf, 3, width * height, input );
output = fopen("test.ppm", "wb"); //to save PPM data in "test.ppm"
make_ppm_header ( ppmh, width, height );
for ( int i = 0; i < 15; ++i ) //save PPM header

putc ( ppmh[i], output );
save_ppmdata (output, (CImage*) ibuf, width, height);//save data
printf("\nPPM file test.ppm created!\n");

fclose ( input ); fclose ( output );
return 0;

}

——————————————————————————————————-

When you execute the program ppmdemo, you should see messages similar to the fol-
lowing displayed.

PPM file testwrite.ppm created!
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P6 PPM file:
width=200 height=300 colorlevles=256

PPM file test.ppm created!

The program first creates a PPM file named “testwrite.ppm” whose data form a red
square. If you view the file with the command xview testwrite.ppm, you should see a small
red square image. The program then reads in the data from the PPM file “testread.ppm” and
prints out its width, height and color levels. Finally, it writes the information to another file
named “test.ppm”. Again, you can view the image using the command xview test.ppm.

6.4.4 Saving Graphics with glReadPixels

With the PPM functions developed in the above section, we can save an OpenGL graphics
scene to a PPM file. We first use the function glReadPixels() to read the specified scene
on the screen into a buffer and then save the data in the buffer in a PPM file. Then we can
use the convert utility to convert the PPM file to a file in any standard image format such
as PNG, JPEG, TIFF, or GIF. The following code section shows an example that saves the
graphics scene in the file “teapot.ppm”; the code for error-checking and lighting is omitted
here. The scene saved is shown in Figure 6-8.

void save_ppmRGB ( FILE *fp, unsigned char *p, int width, int height )
{

//save data up-side-down
int k;
for ( int i = 0; i < height; i++ ) {

k = (height - 1 - i) * width * 3;
for ( int j = 0; j < width; j++ ) {

putc( p[k++], fp );
putc( p[k++], fp );
putc( p[k++], fp );

}
}

}

void ppm_save_image ( char *n1, int x0, int y0, int width, int height )
{

unsigned char *imgBuffer;
imgBuffer = ( unsigned char *) malloc( 3 * width * height );
//read the screen data to buffer pointed by
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x0,y0, width,height, GL_RGB, GL_UNSIGNED_BYTE, imgBuffer);

int ppmh[20], c; //PPM header
make_ppm_header ( ppmh, width, height );
FILE *fpo = fopen ( n1, "wb" );
for ( int i = 0; i < 15; ++i ) //save PPM header

putc ( ppmh[i], fpo );
save_ppmRGB ( fpo, imgBuffer, width, height );
fclose ( fpo );
delete imgBuffer;

}

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode (GL_PROJECTION);
glLoadIdentity (); // clear the matrix
glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
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glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
gluLookAt ( 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glColor3f (1.0, 0.0, 0.0); //red color
glutSolidTeapot( 0.6 ); //draw a teapot
glColor3f (0.0, 1.0, 0.0); //green color
glTranslatef(-0.5, -0.5, -1.0);
glutSolidSphere( 0.6, 40, 40 );//draw a sphere
glFlush ();
int x0 = 140, y0 = 160, width = 200, height = 150;
ppm_save_image ( "teapot.ppm", x0, y0, width, height );

}

Note that in the function save ppmRGB(), we save the image data in the buffer imgBuffer
in an “up-side-down” manner. This is because glReadPixels considers the lower-left corner
of the screen window as (0, 0) but the PPM image format considers the upper-left corner
as (0, 0).

We can view the image from the program with the UNIX command “xview teapot.ppm”
which displays the image as shown in Figure 6-8 along with the following message:

$ xview teapot.ppm
teapot.ppm is a 200x150 Raw PPM image with 256 levels

Building XImage...done

Figure 6-8 PPM Image Created by Above Code

The command “convert teapot.ppm teapot.png” converts the PPM data to PNG format.

6.4.5 Displaying PPM Images with glDrawPixels

If we want to display a PPM image in an OpenGL application, we can use the function
glReadPixels() to do so. The following code section demontrates how this is done; it calls
the function read ppm image() to read in the data of the ppm file “../data/soolee.ppm”
into a buffer. The function then uses glDrawPixels() to display the image at the specified
location (x0, y0) which is (0, 0) in the example. The code also uses the function glutSolid-
Sphere() to create a sphere that simulates an exaggerated table tennis ball and superimpose
it on the PPM image. The error-checking statements are omitted in the program. (Readers
can download complete programs which may contain error-checking statements from this
book’s web site.) The output of the code is shown in Figure 6-9.

void read_ppm_image( char *n1, float x0, float y0 )
{

FILE *fpi = fopen( n1, "rb");
int width, height, c, colorlevels;;
unsigned char *imgBuffer;
char temp[100];
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ppm_read_comments ( fpi );
fscanf ( fpi, "%2s", temp );
temp[3] = 0;
if ( strncmp ( temp, "P6", 2 ) )

throw ppm_error();
ppm_read_comments ( fpi );
fscanf ( fpi, "%d", &width );
ppm_read_comments ( fpi );
fscanf ( fpi, "%d", &height );
ppm_read_comments ( fpi );
fscanf ( fpi, "%d", &colorlevels );
ppm_read_comments ( fpi );
while ( ( c = getc ( fpi )) == ’\n’ );//get rid of extra line returns
ungetc ( c , fpi);

imgBuffer = ( unsigned char *) malloc( 3 * width * height );
//read image up-side down
int k;
for ( int i = 0; i < height; i++ ) {

k = (height - 1 - i) * width * 3;
for ( int j = 0; j < width; j++ ) {

imgBuffer[k++] = (unsigned char) getc( fpi );
imgBuffer[k++] = (unsigned char) getc( fpi );
imgBuffer[k++] = (unsigned char) getc( fpi );

}
}

//read data pointed by imgBuffer to frame buffer for display
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glRasterPos2f ( x0, y0 );
glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE, imgBuffer);

fclose ( fpi );
delete imgBuffer;

}

void display(void)
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode (GL_PROJECTION);
glLoadIdentity (); // clear the matrix
glOrtho (-1.0, 1.0, -1.0, 1.0, -10.0, 10.0);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();
float x0 = -1.0, y0 = -1.0;
read_ppm_image ("../data/soolee.ppm", x0, y0);
glColor3f (1.0, 0.8, 0.0);
glutSolidSphere( 0.2, 40, 40 );//draw a ball
glFlush ();

}
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Figure 6-9 Display PPM Image Using glDrawPixels

6.4.6 Portable Network Graphics (PNG)

We have seen that PPM image format is very simple and easy to process. It is an excellent
format for illustration and testing certain graphics programming concepts. However, the
data are stored without any compression and the header contains only very little information
about the image data. If we want to read and write image data from and to a file more
efficiently, it is better to use one of the more sophisticated open standards. We feel that the
best open format that we should use is the portable network graphics (PNG), which is an
open, extensible image format with lossless compression and the following features:

1. It is designed in 1995 specifically in response to the patent problems with the LZW
algorithm used in GIF.

2. It is ‘completely’ patent-free.
3. It supports alpha channels and allows up to 254 levels of partial transparency.
4. It supports gamma correction.
5. One can find more detailed information of PNG at the site http://www.libpng.org/.

Instead of writing our own routines to process PNG files, we shall use a simple open-
source library to accomplish the task. The library that we shall use is the imageio library
utility developed by Adrien Treuille of CMU. It is particularly simple to compile and use.
One can download the library source code from the site

http://www.cs.cmu.edu/∼treuille/resc/imageio/

or from this book’s web site. This simple library allows users read and write png and tiff
files. The package consists of the program “imageio.cpp” and the header file “imageio.h”.
Assuming that the OpenGL directories are accessible, we can compile the program with
the command,
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g++ -c imageio.cpp

which generates the object file “imageio.o”. To use the functions of the programs, we
include the header file “imageio.h” in our application program:

#include “imageio.h”

Then we link the object file with our application program using a command like the fol-
lowing:

g++ -o program program.o imageio.o -ltiff -lpng

Display PNG Image

We can use loadImageRGBA() of imageio to read a PNG image into memory:

unsigned char *loadImageRGBA(unsigned char *fileName, int *width, int *height);

This function returns a pointer pointing to the uncompressed image data loaded from the
file specified by filename. Parameters width and height will contain the image width and
height respectively. The byte order of images created with this library is compatible with
that used by OpenGL. We can use glDrawPixels to write the data to screen. The following
piece of code is an example of using this function to render an image on the screen:

int width, height;
char *filename = "soolee.png";
unsigned char *ibuff = loadImageRGBA( filename, &width, &height);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glRasterPos2f ( 1.0, 2.0 ); //position to display image
glDrawPixels ( width, height, GL_RGBA, GL_UNSIGNED_BYTE, ibuff );

Save Graphics Scene in PNG

We can save memory data into a PNG file using the function saveImageRGBA() of
imageio:

bool saveImageRGBA(char *fileName, unsigned char *buffer, int width, int height);

This function returns true if the image data stored in buffer is successfully saved in the file
specified by filename, otherwise it returns false. The parameters width and height specify
the width and height of the image. The following code section is an example that saves a
graphics scene into a PNG file:

void png_save_image( char *n1, int x0, int y0, int width, int height)
{

unsigned char *imgBuffer;
imgBuffer = ( unsigned char *) malloc( 4 * width * height );
if ( imgBuffer == NULL ) {

printf("\nError in allocating memory!\n");
return;

}
glPixelStorei(GL_PACK_ALIGNMENT, 1);
glReadPixels(x0,y0, width,height, GL_RGBA,GL_UNSIGNED_BYTE,imgBuffer);
saveImageRGBA(n1, imgBuffer, width, height);
delete imgBuffer;

}
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