
An Introduction to 3D Computer Graphics, Stereoscopic
Image, and Animation in OpenGL and C/C++

Fore June

Appendix A FFmpeg Libraries

A.1 Introduction

FFmpeg has been a popular open-source video library for processing videos. One can also
make use of this library to make interesting graphics as discussed below. It can be down-
loaded from its official site at http://ffmpeg.org/ . FFmpeg is a complete, cross-platform
solution to record, convert and stream audio and video. The code is written in C. It pro-
vides executable programs for users to process and play videos. We do not intend to present
the details of using their executables as they are well documented in their web site. We are
more interested to learn to use their libraries so that we can incorporate their features and
functions into our own applications such as graphics or video games. In this appendix, we
make use of what we have learned about graphics and the libraries to embed a simple video
player in a graphical application. The materials presented here are mostly obtained from
the official FFmpeg web site (http://ffmpeg.org). Interested readers may obtain further
information about FFmpeg directly from the site.

A.2 Getting and Compiling FFmpeg

You may download the source code from their web site directly (http://ffmpeg.org/download.html
). At the time of this writing, their version is 0.5 and you will obtain from the site the zipped
file “ffmpeg-0.5.tar.bz2”. You may unzip it into a directory using the command:

$bunzip2 -c ffmpeg-0.5.tar.bz2 | tar xvf -

It creates the directory “ffmpeg-0.5”. You may go into the directory to configure your
installation. As an example, suppose you want to install the package in the directory
“/apps/mpeg”. You may do the configuration using the command:

$./configure --prefix=/apps/mpeg --enable-cross-compile

After the configuration, you are ready to compile and make the executables and libraries.
However, you need the GNU Make utility version 3.81 or later. (You may check your
system’s make version by the command “make –version”.) If your system’s make is
earlier than 3.81, you need to download version 3.81 or later from the GNU web site (
http://www.gnu.org/). If the version is correct, simply type “make” to build FFmpeg. Then
type “make install” to install all binaries and libraries built into “/apps/mpeg”. After “make
install”, you should find the three directories:

$/apps/mpeg/bin
$/apps/mpeg/lib
$/apps/mpeg/share
$/apps/mpeg/include

2

Appendix A FFmpeg Libraries 3

Directory “bin” contains the executable programs, “ffmpeg”, “ffplay”, and “ffserver”. The
program “ffmpeg” is a very fast video and audio converter, allowing you to grab from a live
audio/video with command-line interface. The program “ffserver” is a streaming server for
both audio and video, supporting several live feeds, streaming from files and time shifting.
If you want to play a video, you need to use “ffplay”, which is a very simple and portable
media player built using the FFmpeg libraries and the SDL library, and is mostly used as a
testbed for various FFmpeg APIs. SDL here stands for Simple DirectMedia Layer, which
is a cross-platform multimedia library designed to provide low level access to 3D hardware
via OpenGL. For details, please refer to its official web site at http://www.libsdl.org/.

The libraries “libavcodec.a”, “libavdevice.a”, “libavformat.a”, and “libavutil.a” are in
the directory “lib” and the corresponding include header-files are in the directory “include”.
Therefore, in building your applications, your include-path should contain
“/apps/mpeg/include” and your library-path should contain “/apps/mpeg/lib”. Actually, we
also need another header file, “libswscale” for building some ffmpeg applications. This
header directory is not built by default in the installation process because it requires a
different distribution license from other ffmpeg libraries. To create this directory in the
installation process, you need to choose a special option in the configuration stage. To sim-
plify the process, we just simply copy these files manually to the appropriate directories:

$mkdir /apps/mpeg/include/libswscale
$cp /apps/ffmpeg-0.5/libswscale/*.h /apps/mpeg/include/libswscale/.

Note that the library “libswscale.a” does not exist. Its functions can be found in the library
“libavcodec.a”. Their usages are to replace the “imgconvert” functions of earlier ffmpeg
versions. If you do not like the“libswscale” functions, simply use “imgconvert”.

For the convenience of explanation, let us make the directories “/apps/mpeg/work” and
“/apps/mpeg/data”, where we shall save our project programs and sample video files re-
spectively.

A.3 Using FFmpeg Libraries

Opening the File

To use FFmpeg libraries, we have to include their header files. Since FFmeg is written in
pure C and our programs are written in C/C++ with extension “.cpp”, we have to use the
keyword “extern” in specifying the include:

extern "C" {
#include <libavcodec/avcodec.h>
#include <libavformat/avformat.h>
#include <libswscale/swscale.h>

}

4 Using FFmpeg Libraries

If we do not use “extern”, the compiler will generate errors. Before opening any video
file, we need to use av register all() to register all available file formats and codecs so that
they will be used automatically when a file with the corresponding format/codec is opened:

av_register_all();

We only have to call this function once in our application. We now can actually open the
video file:

AVFormatContext *pFormatCtx;
char filename[100];
.....

// Open video file
if(av_open_input_file(&pFormatCtx, filename, NULL, 0, NULL)!=0)
return -1; // Couldn’t open file

We provide the filename as input parameter to this function, which reads the file header,
saving information about the file format in the AVFormatContext structure. The last three
arguments are used to specify the file format, buffer size, and format options, but by setting
them to NULL or 0, libavformat will auto-detect the correct parameter values. The in-
formation is returned via pFormatCtx which is a pointer pointing to the AVFormatContext
structure the function has created; the structure contains the miscellaneous video and audio
information such as author, timestamp, packet size and bit rate of the date in the file.

Next, we may retrieve the information from the stream and may dump the information
to the screen:

// Retrieve stream information
if(av_find_stream_info(pFormatCtx)<0)
return -1; // Couldn’t find stream information

// Dump information about file onto standard error
dump_format(pFormatCtx, 0, filename, 0);

The field pFormatCtx->streams is an array of pointers, of size pFormatCtx->nb streams,
each pointing to an AVStream structure. We can search through it to find a video stream:

Appendix A FFmpeg Libraries 5

//Find the first video stream
videoStream=-1;
for(int i=0; i<pFormatCtx->nb_streams; i++) {

if(pFormatCtx->streams[i]->codec->codec_type==CODEC_TYPE_VIDEO){
videoStream=i;
break;

}
}

if(videoStream==-1)
return -1; // Didn’t find a video stream

// Get a pointer to the codec context for the video stream
pCodecCtx=pFormatCtx->streams[videoStream]->codec;

The information of the codec used to enclose the video stream is referred to as “codec
context”, which contains all the information about the codec that the stream is using. Now
we have a pointer to the “codec context”, and we need to find the actual codec to open it:

AVCodec *pCodec;
// Find the decoder for the video stream
pCodec=avcodec_find_decoder(pCodecCtx->codec_id);
if(pCodec==NULL) {

fprintf(stderr, "Unsupported codec!\n");
return -1; // Codec not found

}
//open codec
if(avcodec_open(pCodecCtx, pCodec)<0)

return -1; // Could not open codec

Decoding the Stream

We have found the video stream and know about its codec context. We need to allocate
some memory to buffer the data of one or more frames so that we can further process them.
We shall use the same producer-consumer concept, where a producer thread produces data
and a consumer thread consumes data, to process the decoded data. For instance, we can
allocate memory to buffer 4 frames:

int width = pCodecCtx->width;
int height = pCodecCtx->height;

char *buf[4];
for (int i = 0; i < 4; ++i) {
buf[i] = (char *) malloc (width * height * 3);
if (buf[i] == NULL)
return -2;

}

6 Using FFmpeg Libraries

In this case the decoder is our producer and the player is our consumer. The decoder thread
just needs to decode data and put them in the buffer. The player thread reads the data from
the buffer and displays them on the screen. We can write a class Video to store the relevant
decoding information of the file:

class Video {
private:
SDL_Thread *producer, *consumer;

public:
SDL_Surface *screen;
unsigned long head;
unsigned long tail;
int width;
int height;
int x0; //play position
int y0;
bool quit;
AVCodecContext *pCodecCtx;
AVFormatContext *pFormatCtx;

int videoStream;

........
};

We use FFmpeg function avcodec alloc frame() to allocate a frame structure to hold one
frame. Also, we need the data to be stored in RGB (or BGR) format so that we can use an
SDL function to blit the data on the screen:

AVFrame *pFrame, *pFrameRGB;
if(pFrame==NULL)

return -1;

// Allocate video frame buffer for holding one frame of data
pFrame=avcodec_alloc_frame();

// Allocate an AVFrame structure for holding one frame of RGB data
pFrameRGB=avcodec_alloc_frame();
if(pFrameRGB==NULL)

return -1;

We have to convert our frame from its native format to RGB. Our decoder makes use
of the FFmpeg function avcodec decode video() to decode the video stream and it uses
sws getContext() and sws scale() to convert the image from its native format to RGB. In
older FFmpeg versions, the function img convert() is supplied to make the conversion, but
now this function has been deprecated. We shall also use FFmpeg function av malloc() to

Appendix A FFmpeg Libraries 7

temporarily allocate memory to buffer one frame of data and use avpicture fill() to asso-
ciate the frame with the newly allocated buffer. The following shows the decoder thread:

Program Listing A-1
——————————————————————————————————

//Producer Thread
int decoder (void *data)
{

Video *vi = (Video *) data;
SDL_Surface *screen = (SDL_Surface *) vi->screen;
AVCodecContext *pCodecCtx = vi->pCodecCtx;
.......
int frameFinished;
AVPacket packet;
AVFrame *pFrame;
// Allocate video frame
pFrame=avcodec_alloc_frame();
// Allocate an AVFrame structure
AVFrame *pFrameRGB;
pFrameRGB=avcodec_alloc_frame();
if(pFrameRGB==NULL)

return -1;
uint8_t *buffer;
int numBytes;
// Determine required buffer size and allocate buffer
numBytes=avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width,

pCodecCtx->height);
while (!vi->quit) {

if (vi->tail >= vi->head + 4) { //buffer full
SDL_Delay (30);
continue;

}
//produce data
if (av_read_frame(pFormatCtx, &packet)>=0) {

// Is this a packet from the video stream?
if(packet.stream_index==videoStream) {

// Decode video frame
avcodec_decode_video(pCodecCtx, pFrame, &frameFinished,

packet.data, packet.size);
// Did we get a video frame?
if(frameFinished) {

// Convert the image from its native format to RGB
SwsContext * encoderSwsContext = sws_getContext(
pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt,
pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24,
SWS_BICUBIC, NULL,NULL,NULL);

sws_scale(encoderSwsContext, pFrame->data,
pFrame->linesize, 0, pCodecCtx->height, pFrameRGB->data,
pFrameRGB->linesize);

char *pb = vi->buf[vi->tail%4]; //points to buffer slot
int size = vi->width * 3;

//copy decoded data to our buffer
for (int y = 0; y < height; y++){

char *pc =(char *)
(pFrameRGB->data[0]+y*pFrameRGB->linesize[0]);

int k = 0;

8 Using FFmpeg Libraries

char *p = pb + y * size;
for (int i = 0; i < vi->width; ++i) {
p[k] = pc[k+2];
p[k+1] = pc[k+1];
p[k+2] = pc[k];
k += 3;

}
}
vi->tail++;

}
}
// Free the packet that was allocated by av_read_frame
av_free_packet(&packet);

} else
vi->quit = true;

} //while
//free resources here
.......
return 0;

}

——————————————————————————————————

After we exited the while loop near the end of the decoder, we need to free the resources
allocated by FFmpeg functions. We again call the FFmpeg functions to free them:

// Free the RGB image
av_free(buffer);
av_free(pFrameRGB);

// Free the YUV frame
av_free(pFrame);

// Close the codec
avcodec_close(pCodecCtx);
// Close the video file
av_close_input_file(pFormatCtx);

When we initialize the SDL, its better to use the double buffering feature so that we can
carry out the decoding and put the decoded data at the background. We later swap the
background and foreground buffers to avoid any flickering effect:

Appendix A FFmpeg Libraries 9

//initialize video system
if (SDL_Init(SDL_INIT_VIDEO) < 0) {

fprintf(stderr, "Unable to init SDL:%s\n",SDL_GetError());
exit(1);

}

//set video mode of with 24-bit pixels
screen = SDL_SetVideoMode(640, 480, 24, SDL_DOUBLEBUF);
if (screen == NULL) {

fprintf(stderr, "Unable to set video:%s\n",SDL_GetError());
exit(1);

}

Playing the Video Data

The player thread which sends the decoded data to the screen is our consumer. It ‘con-
sumes’ the data generated by the decoder. It puts a frame on the screen at the position (x0,
y0) specified by the user. A background buffer is created to hold a frame of RGB data. The
data are sent to the screen by SDL BlitSurface() and SDL UpdateRect():

Program Listing A-2
——————————————————————————————————

//Consumer Thread
int player (void *data)
{

Video *vi = (Video *) data;
SDL_Surface *screen = (SDL_Surface *) vi->screen;
Uint32 prev_time, current_time;
current_time = SDL_GetTicks();//ms since library starts
prev_time = SDL_GetTicks(); //ms since library starts

SDL_Surface *background;
background = SDL_CreateRGBSurface(SDL_SWSURFACE,

vi->width, vi->height, 24, 0, 0, 0, 0);
if (background == NULL) {

fprintf(stderr, "Unable to set video: %s\n",SDL_GetError());
return -1;

}
while (!vi->quit) {

if (vi->head == vi->tail){//buffer empty (data not available)
SDL_Delay (30); //sleep for 30 ms
continue;

}
//consumes the data
background->pixels = vi->buf[vi->head%4];
current_time = SDL_GetTicks(); //ms since library starts
if (current_time - prev_time < 50)//20 fps ˜ 50 ms / frame

SDL_Delay (50 - (current_time - prev_time));
prev_time = current_time;

SDL_Rect source_rect, dest_rect;
source_rect.x = 0; source_rect.y = 0;
source_rect.w = vi->width;

10 Using FFmpeg Libraries

source_rect.h = vi->height;
dest_rect.x = vi->x0; dest_rect.y = vi->y0;
dest_rect.w = vi->width;
dest_rect.h = vi->height;

SDL_BlitSurface(background, &source_rect, screen, &dest_rect);
SDL_UpdateRect (screen, 0, 0, 0, 0); //update whole screen
vi->head++;

} //while

return 0;
}

——————————————————————————————————

Sample Makefile

The following is a typical Makefile for compiling and linking programs that use ffmpeg
libraries:

#Sample Makefile for using ffmpeg libraries.
#"video.cpp" and "vplayer.cpp" are the application files

#users may need to modify the SDL path
LIBSDL = -L/usr/local/lib -L/usr/local/lib -lSDL -lpthread

PROG=vplayer
CC=g++
BASE=/apps/mpeg
FI = $(BASE)/include
FLIBS = -L$(BASE)/lib -lavcodec -lavdevice -lavformat -lavutil \

-L/usr/lib
INCLS = -I/usr/include -I$(FI)/libavcodec -I$(FI)/libavdevice \

-I$(FI)/libavformat -I$(FI)/libavutil -I$(FI)
#source codes
SRCS = $(PROG).cpp
#substitute .cpp by .o to obtain object filenames
OBJS = $(SRCS:.cpp=.o) video.o
FLAGS= -D_ISOC99_SOURCE -D_POSIX_C_SOURCE=200112 -g
FLAGS2=-rdynamic -export-dynamic -Wl,--warn-common -Wl,\

--as-needed -Wl,
PATHS=-rpath-link,-Wl,-Bsymbolic
fflibs=-lavdevice -lavformat -lavcodec -lavutil
otherlibs=-lz -lbz2 -lm -lasound -ldl

#$< evaluates to the target’s dependencies,
#$@ evaluates to the target
$(PROG): $(OBJS)

$(CC) -o $@ $(OBJS) $(FLAGS) $(FLIBS) $(FLAGS2)$(PATHS)\
$(fflibs) $(otherlibs) $(LIBSDL)

$(OBJS):
$(CC) -c $*.cpp $(INCLS)

clean:
rm $(OBJS)

Appendix A FFmpeg Libraries 11

A.4 Using FFmpeg Functions in Graphics

In the above sections, we discuss the usage of FFmpeg libraries. In the example, the de-
coded data are in RGB form and saved in a buffer. We can regard each frame as an image
and make further processing on it. A typical application is to incorporate a video in a
graphics application. This is commonly used in video game software. As an example, we
discuss how we can use the techniques we have discussed to play videos in an OpenGL (
Open Graphics Library) application.

First, we have to set the SDL video mode with the “SDL OPENGL” option:

SDL_Surface *screen;
screen = SDL_SetVideoMode(640, 480, 24, SDL_SWSURFACE|SDL_OPENGL);

We may then initialize our graphics as usual. The following is a typical initialization of a
graphics application that has a yellow light source at (20, 40, 20) and the camera (view
point) is located at (0, 0, 10), viewing at the origin (0, 0, 0) with the up direction along
the y-axis (0, 1, 0):

void init_gl (SDL_Surface *screen) {
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glViewport(0, 0, screen->w, screen->h);
glMatrixMode(GL_PROJECTION);
glOrtho(-2.0, 2.0, -2.0, 2.0, -20.0, 20.0); //world window
//camera at (0, 0, 10), looking at (0, 0, 0) with up-axis (0, 1, 0)
gluLookAt (0, 0, 10, 0, 0, 0, 0, 1, 0);

glMatrixMode(GL_MODELVIEW);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
glShadeModel(GL_SMOOTH);
glClearColor(1.0, 1.0, 1.0, 1.0); //white background
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
GLfloat light[] = { 1.0, 1.0, 0 }; //yellow light
//light source at (20,40,20)
GLfloat light_position[]={20.0,40.0,20.0,1.0};
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light);
glLightfv(GL_LIGHT0, GL_SPECULAR, light);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

}

With the OpenGL functions available, we no longer need to use the SDL functions like
SDL UpdateRect() to send the image data to the screen. Instead, we can use the OpenGL
functions glDrawPixels() to write the image data to the graphics frame buffer at a location

12 Using FFmpeg Functions in Graphics

specified by glRasterPos(). The data in the frame buffer are rendered to the screen. Using
this method, we can play the video at more than one position of the screen simultaneously.
The following is an example of simultaneous display of a video at two positions with a lit
sphere revolving around:

//vi points to an object of the video class
//width = image width, height = image height
while (!vi->quit) {

if (vi->head == vi->tail) { //buffer empty
SDL_Delay (30); //sleep for 30 ms
continue;

}
//consumes the data
current_time = SDL_GetTicks(); //ms since library starts
if (current_time - prev_time < 50) //20 fps ˜ 50 ms / frame

SDL_Delay (50 - (current_time - prev_time));
prev_time = current_time;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef (vi->az,0, 0, 1);
glTranslatef (1.5, 0, 0);
glutSolidSphere (0.25, 22, 16); //creates a solid sphere
glPopMatrix();
vi->az += 1.0;
glRasterPos2i (-2, -2);
//may use GL_BGR depending on how data are organized in buf[]
glDrawPixels(width, height, GL_RGB, GL_UNSIGNED_BYTE,

vi->buf[vi->head%4]);
glRasterPos2i (0, 0);
glDrawPixels (width, height, GL_RGB, GL_UNSIGNED_BYTE,

vi->buf[vi->head%4]);

glFlush();
SDL_GL_SwapBuffers();
vi->head++;

} //while

As another example of graphics application we may use each video frame as a texture
image and paste it on any object we want. In other words, we can play the video on any
object surface. The following code listing shows how we can play the video on the 6 faces
of a rotating cube. In the code, the array texImages[] points to the video images saved in
the buffer array buf[] that we have discussed before.

Appendix A FFmpeg Libraries 13

if (!tex_initialized) {
glShadeModel (GL_FLAT);
glEnable(GL_DEPTH_TEST);

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glGenTextures(6, texName);
for (int i = 0; i < 6; ++i) {

//now we work on texName
glBindTexture(GL_TEXTURE_2D, texName[i]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

}
tex_initialized = true;

}

glEnable(GL_TEXTURE_2D);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
float x0 = -1.0, y0 = -1, x1 = 1, y1 = 1, z0 = 1;
//defining the 6 faces of a cube
float face[6][4][3] =

{{{x0, y0, z0},{x1, y0, z0}, {x1, y1, z0},{x0, y1, z0}},//front
{{x0, y1, -z0},{x1, y1, -z0},{x1, y0, -z0},{x0,y0,-z0}},//back
{{x1, y0, z0},{x1, y0, -z0},{x1,y1,-z0}, {x1, y1, z0}},//right
{{x0, y0, z0},{x0, y1, z0},{x0, y1, -z0}, {x0, y0, -z0}},//left
{{x0, y1, z0},{x1, y1, z0},{x1, y1, -z0}, {x0, y1, -z0}},//top
{{x0, y0, z0},{x0, y0, -z0},{x1, y0, -z0},{x1, y0, z0}}//bottom
};
glEnable(GL_CULL_FACE);
glCullFace (GL_BACK);
glPushMatrix();
glRotatef(ax, 1.0, 0.0, 0.0);//rotate the cube along x-axis
for (int i = 0; i < 6; ++i){//draw cube with texture images

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width,
height, 0, GL_RGB, GL_UNSIGNED_BYTE, texImages[i]);

glBindTexture(GL_TEXTURE_2D, texName[i]);
glBegin(GL_QUADS);

glTexCoord2f(0.0, 0.0); glVertex3fv (face[i][0]);
glTexCoord2f(1.0, 0.0); glVertex3fv (face[i][1]);
glTexCoord2f(1.0, 1.0); glVertex3fv (face[i][2]);
glTexCoord2f(0.0, 1.0); glVertex3fv (face[i][3]);

glEnd();
}
glPopMatrix();
glFlush();
glDisable(GL_TEXTURE_2D);

Figure A-1 is an image captured from the output of the program that plays two instances
of a video with a revolving sphere and Figure A-2 shows that the video is played on a cube
with a lit sphere revolving around it.

The blending of image processing and computer graphics is a new field of study. Many
objects can be synthesized by computer graphics techniques. Therefore, the scene of a
video may be specified by a few parameters and a computer model can reconstruct the
scene based on the parameters. It can result in very high compression and pleasant pre-
sentation of the video. The international standard MPEG-4 has introduced the concept of
hybrid synthetic and natural video objects for visual communication. In this method, we

14 Using FFmpeg Functions in Graphics

code the ‘natural’ or ‘real world’ objects using the traditional coding techniques we have
discussed, but we employ some tools from the 2D/3D animation community to render syn-
thetic or computer-generated visual scenes.

Figure A-1 Graphics Playing Two Video Instances

Figure A-2 Graphics Playing Video on Rotating Cube

Using computer graphics techniques, one can generate any 3D visual objects using poly-
gon meshes. A polygon mesh models a 3D object as a collection of polygons, which may
be simply triangles. One can rotate, translate, or scale the mesh to simulate the motion of
any rigid body. Moreover, by deforming a couple polygons in a mesh, we can use the mesh
to synthesize non-rigid objects like human bodies. For example, MPEG-4 specifies support
for animated face and body models by defining the geometric shape of a body or face model
and sending animation parameters to animate the body/face model. Developers use Facial
Definition Parameters (FDPs) to describe a face model and Facial Animation Parameters

Appendix A FFmpeg Libraries 15

(FAPs) to describe its animation. One can use the default FDPs to render a generic face at
the decoder, and obtain a custom set of FDPs sent by the encoder to create a specific face.
The FAPs sent by the encoder are used to animate the face model. A typical application of
this is to ‘compress’ the scene of a TV news announcement where the scene is fairly static
with the main motion in the picture due to lips movement of the announcer; also in such an
application, the exact motion of other parts of the body of the news announcer is not very
crucial. In a similar way, MPEG-4 specifies the use of Body Definition Parameters (FDPs)
and Body Animation Parameters (BAPs) to render a human body. Using these parameters,
one can render generic body models as well as a customized synthetic body to represent a
‘real world’ human. In general, an application for face and body animation consists of the
generation of virtual scenes containing face and/or body meshes, as well as model-based
coding of natural (real world) face or body scenes, where face and/or body movement is
analyzed, coded and transmitted by the encoder as a set of BAPs and FAPs; upon receiving
the BAPs and FAPs, the decoder utilize them to synthesize the face and body.

16 Using FFmpeg Functions in Graphics

Other books by the same author

Windows Fan, Linux Fan
by Fore June

Windws Fan, Linux Fan describes a true story about a spiritual battle between a Linux fan
and a Windows fan. You can learn from the successful fan to become a successful Internet
Service Provider (ISP) and create your own wealth. See http://www.forejune.com/

Second Edition, 2002.
ISBN: 0-595-26355-0 Price: $6.86

Appendix A FFmpeg Libraries 17

An Introduction to Digital Video Data
Compression in Java

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in java. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding. See

http://www.forejune.com/
January 2011

ISBN-10: 1456570870

ISBN-13: 978-1456570873

———————————————————————————————————–

An Introduction to Video Compres-
sion in C/C++

by Fore June

The book describes the the principles of digital video data compression techniques and its
implementations in C/C++. Topics covered include RBG-YCbCr conversion, macroblocks,
DCT and IDCT, integer arithmetic, quantization, reorder, run-level encoding, entropy en-
coding, motion estimation, motion compensation and hybrid coding.

January 2010
ISBN: 9781451522273

	Appendix A FFmpeg Libraries
	A.1 Introduction
	A.2 Getting and Compiling FFmpeg
	A.3 Using FFmpeg Libraries
	Opening the File
	Decoding the Stream
	Playing the Video Data
	Sample Makefile

	A.4 Using FFmpeg Functions in Graphics

