
1

An Introduction to Video Compression in C/C++

Fore June

Chapter 1

Image and Video Storage Formats

There are a lot of proprietary image and video file formats, each with clear strengths and weak-
nesses. The file formats are generally not a user-defined option and many of the features are
specified by the vendors. This book is about video compression programming and we are not
interested in exploring various file formats. However, we do need to know a few formats in order
that we can carry out experiments on image or video compression using files downloaded from the
Internet. Therefore, we shall discuss a couple of simple standard formats and some related tools
that we will use later in this book.

4.1 Portable Pixel Map (PPM)

The Portable Pixel Map (PPM) file format is a lowest and simplest common denominator color
image format. A PPM file contains very little information about the image besides basic colors
and thus it is easy to write programs to process the file, which is the purpose of this format. A
PPM file consists of a sequence of one or more PPM images. There are no data, delimiters, or
padding before, after, or between images. The PPM format closely relates to two other bitmap
formats, the PBM format, which stands for Portable Bitmap (a monochrome bitmap), and PGM
format, which stands for Portable Gray Map (a gray scale bitmap). All these formats are not
compressed and consequently the files stored in these formats are usually quite large. In addition,
the PNM format means any of the three bitmap formats. You may use the unix manual command
man to learn the details of the PPM format:

$man ppm
The three bitmap formats can be stored in two possible representations:

1. an ASCII text representation (which is extremely verbose), and
2. a binary representation (which is comparatively smaller).

Each PPM image consists of the following (taken from unix ppm manual):

1. A “magic number” for identifying the file type. A ppm image’s magic number is the two
characters “P6”.

2. Whitespace (blanks, TABs, CRs, LFs).
3. A width, formatted as ASCII characters in decimal.
4. Whitespace.
5. A height, again in ASCII decimal.
6. Whitespace.

1

2 Portable Pixel Map (PPM)

7. The maximum color value (Maxval), again in ASCII decimal. Must be less than 65536 and
more than zero.

8. Newline or other single whitespace character.
9. A raster of Height rows, in order from top to bottom. Each row consists of Width pixels,

in order from left to right. Each pixel is a triplet of red, green, and blue samples, in that
order. Each sample is represented in pure binary by either 1 or 2 bytes. If the Maxval is
less than 256, it is 1 byte. Otherwise, it is 2 bytes. The most significant byte is first. A
row of an image is horizontal. A column is vertical. The pixels in the image are square and
contiguous.

10. In the raster, the sample values are “nonlinear”. They are proportional to the intensity of the
ITU-R Recommendation BT.709 red, green, and blue.

In summary, a PPM file has a header and a body, which may be created using a text editor. The
header is very small with the following properties:

1. The first line contains the magic identifier “P3” or “P6”.
2. The second line contains the width and height of the image in ascii code.
3. The last part of the header is the maximum color intensity integer value.
4. Comments are preceded by the symbol #.

Here are some header examples:

Header example 1

P6 1024 788 255

Header example 2

P6
1024 788
A comment
255

Header example 3

P3
1024 # the image width
788 # the image height

A comment
1023

The following is an example of a PPM file in P3 format.

P3
feep.ppm
4 4
15
0 0 0 0 0 0 0 0 0 15 0 15
0 0 0 0 15 7 0 0 0 0 0 0
0 0 0 0 0 0 0 15 7 0 0 0
15 0 15 0 0 0 0 0 0 0 0 0

You can simply use a text editor to create it; for example, copy-and-paste the content into a file
named “feep.ppm” with the header “P3” aligned to the leftmost margin; it then becomes a PPM
file and can be viewed by a browser or the unix utility display by ImageMagick. When you

Chapter 4 Image and Video Storage Formats 3

execute the command,

$ display feep.ppm

you should see a tiny image appear on the upper left corner of your screen.

4.2 The Convert Utility

Once we obtain an image in PPM format, we can easily convert it to other popular formats such
as PNG, JPG, or GIF using the convert utility, which is a member of the ImageMagick suite of
tools. Conversely, if you obtain an image from other sources in another format, you may also use
convert to convert it to the PPM format. Besides making conversion between image formats, the
utility can also resize an image, blur, crop, despeckle, dither, draw on, flip, join, re-sample, and do
much more. It can even create an image from text. We use the unix manual command to see the
details of its usage:

$ man convert
We can also run ‘convert -help’ to get a summary of its command options. The following are some
simple examples of its usage.

$convert feep.ppm feep.png
$convert house.jpg house.ppm
$convert house.jpg -resize 60% house.png
$convert -size 128x32 xc:transparent -font \

Bookman-DemiItalic -pointsize 28 -channel RGBA \
-gaussian 0x4 -fill lightgreen -stroke green \
-draw "text 0,20 ’Freedom’" freedom.png

The last command creates a PNG (Portable Network Graphics) file named “freedom.png” from
the text “Freedom”. Figure 4-1 shows the image thus created.

Figure 4-1 Image Created by convert

If you want to convert a PDF file to PPM, you may use the utility pdftoppm. You may run
“pdftoppm –help” to find out the details of its usage.

4.3 Read and Write PPM Files

To process any PPM and related graphics file, you may use the the netpbm library
http://netpbm.sourceforge.net, which can be downloaded from the Internet. However, for the pur-
pose of this book, we just need something very simple to read or write a PPM file. In this section,
we present a simple C program that shows how to read or write a PPM file.

The C/C++ program shown in Listing 4-1 briefly demonstrates the reading and writing of PPM
files; the file names and some parameters are hard-coded; the class CImage with public members
red, green, and blue is used to save the color data of one pixel. In a C++ program, a public class is
the same as a C struct.

Program Listing 4-1 Read and Write PPM Files

--
/* ppmdemo.cpp

* Demostrate read and write of PPM files.

4 Read and Write PPM Files

* Compile: g++ -o ppmdemo ppmdemo.cpp

* Execute: ./ppmdemo

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//A public class is the same as a ’struct’
class CImage {
public:

unsigned char red;
unsigned char green;
unsigned char blue;

};

// Create PPM header from image width and height. "P6" format used.
// PPM header returned in integer array ppmh[].
void make_ppm_header (int ppmh[], int width, int height)
{

//standard header data, ’P’ = 0x50, ’6’ = 0x36, ’\n’ = 0x0A
int ca[] = {0x50, 0x36, 0x0A, //"P6"

//image width=260, height = 288
0x33, 0x36, 0x30, 0x20, 0x32, 0x38,

//color levels / pixel = 256
0x38, 0x0A, 0x32, 0x35, 0x35, 0x0A };

//only have to change width and height
char temp[10], k;

sprintf(temp, "%3d", width); //width in ascii code
k = 0;
for (int i = 3; i <= 5; ++i) //replace width
ca[i] = temp[k++];

sprintf(temp, "%3d", height); //height in ascii code
k = 0;
for (int i = 7; i <=9; ++i) //replace height
ca[i] = temp[k++];

for (int i = 0; i < 15; ++i) //form header
ppmh[i] = ca[i];

}

void save_ppmdata (FILE *fp, CImage *ip, int width, int height)
{

int size = width * height;
for (int i = 0; i < size; ++i){

putc (ip[i].red, fp);
putc (ip[i].green, fp);
putc (ip[i].blue, fp);

}
}

void ppm_read_comments (FILE *fp)
{

Chapter 4 Image and Video Storage Formats 5

int c;
while ((c = getc (fp)) == ’#’) {
while (getc(fp) != ’\n’)

;
}
ungetc (c, fp);

}

class ppm_error
{

public:
ppm_error() {
printf("\nIncorrect PPM format!\n");
exit (1);

}
};

int main()
{
int ppmh[20]; //PPM header
int width = 32, height = 32; //image width and height
make_ppm_header (ppmh, width, height);
//PPM file for testing read
FILE *input = fopen("testread.ppm", "rb");
//PPM file for testing write
FILE *output = fopen ("testwrite.ppm", "wb");

//write demo
for (int i = 0; i < 15; ++i) //save PPM header

putc (ppmh[i], output);

CImage image[width][height];
for (int i = 0; i < height; ++i) { //create a red rectangle

for (int j = 0; j < width; ++j) {
image[i][j].red = 255; //red component
image[i][j].green = 0; //green component
image[i][j].blue = 0; //blue component

}
}
save_ppmdata (output, (CImage*) image, width, height);
printf("\nPPM file testwrite.ppm created!\n");
fclose (output);

//read demo
ppm_read_comments (input); //read comments
char temp[100];
fscanf (input, "%2s", temp);
temp[3] = 0;
if (strncmp (temp, "P6", 2))

throw ppm_error();
ppm_read_comments (input);
fscanf (input, "%d", &width);
ppm_read_comments (input);
fscanf (input, "%d", &height);
ppm_read_comments (input);

6 Common Intermediate Format (CIF)

int colorlevels;
fscanf (input, "%d", &colorlevels);
printf("\n%s PPM file: ", temp);
printf(" \n\twidth=%d\theight=%d\tcolorlevles=%d\n",

width,height,colorlevels+1);
ppm_read_comments (input);
while ((c = getc (input)) == ’\n’); //get rid of extra returns
ungetc (c ,input);

//save the data in another file
CImage ibuf[width][height];
fread (ibuf, 3, width * height, input);
output = fopen("test.ppm", "wb"); //to save PPM data in "test.ppm"
make_ppm_header (ppmh, width, height);
for (int i = 0; i < 15; ++i) //save PPM header

putc (ppmh[i], output);
save_ppmdata (output, (CImage*) ibuf, width, height);//save data
printf("\nPPM file test.ppm created!\n");

fclose (input); fclose (output);
return 0;

}
--

When you execute the program ppmdemo, you should see messages similar to the following
displayed.

PPM file testwrite.ppm created!

P6 PPM file:
width=200 height=300 colorlevles=256

PPM file test.ppm created!

The program first creates a PPM file named “testwrite.ppm” whose data form a red square. If
you view the file with the command display testwrite.ppm, you should see a small red square
image. The program then reads in the data from the PPM file “testread.ppm” in the data directory
and prints out its width, height and color levels. Finally, it writes the information to another file
named “test.ppm”. Again, you can view the image using the command display test.ppm.

4.4 Common Intermediate Format (CIF)

There exists a wide variety of ‘standard’ video formats which would lay a heavy burden on a
developer to study and understand them for encoding or decoding data saved in their formats. In
practice, it is common for a party to use a utility program to capture or convert the data to a set
of standard ‘intermediate formats’ before compressing or transmitting the data. The Common
Intermediate Format (CIF), first proposed in the H.261 standard, is designed for the purpose
of standardizing the horizontal and vertical resolutions in pixels of YCbCr video data. CIF allows
easy conversions to standard television systems of PAL (Phase Alternating Line) and NTSC (the
National Television System Committee). CIF is also known as FCIF (Full Common Intermediate
Format); it defines a video sequence with a luminance resolution of 352 × 288 and a frame rate
of 30000/1001(≈ 29.97) fps with color encoding using YCbCr 4:2:0. Note that a CIF-image (
352× 288) consists of 22× 18 macroblocks, each of which is a 16× 16 pixel block that we shall
discuss in Chapter 5. QCIF, meaning “Quarter CIF” defines a resolution with frame width and
height halved as compared to that of CIF. Similarly, SQCIF (Sub Quarter CIF), 4CIF (4 × CIF

Chapter 4 Image and Video Storage Formats 7

) and 16CIF define various resolutions with CIF as the basis. Table 4-1 below summarizes these
formats.

Table 4-1 Common Intermediate Format
Luminance Resolution Bits / Frame

Format (horizontal × vertical) (4:2:0, 8 bits/Sample)
CIF 352× 288 1216512
QCIF 176× 144 304128
SQCIF 128× 96 147456
4CIF 704× 576 4866048
16CIF 1408× 1152 14598144

The CIF formats do not use square pixels. Rather, they specify a pixel to have a native aspect
ratio of approximately 1.222:1 because on older television systems, a pixel aspect ratio of 1.2:1
was the standard for 525-line systems. As computer systems use square-pixel, a CIF raster has to
be rescaled horizontally by about 109% in order to avoid a “stretched” appearance.

The choice of a particular CIF format depends on the application and available resources like
storage and transmission capacity. For example, video conferencing requires real-time transmis-
sion of data and its applications commonly use CIF and QCIF that give fairly good resolution
but do not give an overwhelming amount of data. As standard-definition-television has higher
transmission bandwidth and DVD-videos are recorded off-line, 4CIF is an appropriate format. For
mobile multimedia applications, QCIF or SQCIF are appropriate as the display resolution and
transmission bandwidth are limited. Column 3 of Table 4-1 shows the number of bits required to
represent one uncompressed frame for each CIF format, where YCbCr 4:2:0 format and 8 bits per
luma and chroma sample are used.

8 Common Intermediate Format (CIF)

	Imaging Basics
	3.1 Sampling and Quantization
	3.1.1 Spatial Sampling
	3.1.2 Temporal Sampling
	3.1.3 Quantization

	3.2 Color Spaces
	3.3 RGB Color Model
	3.4 Color Systems
	3.4.1 The XYZ Color Model
	3.4.2 YUV Color Model
	3.4.3 YCbCr Color Model

	3.3 Conversions between RGB and YCbCr
	3.3.1 Floating Point Implementation
	3.3.2 Integer Implementation

	3.4 YCbCr Sampling Formats
	4:4:4 YCbCr Sampling Formats
	4:2:2 YCbCr Sampling Formats (High Quality Color Reproduction)
	4:2:0 YCbCr Sampling Formats (Digital Television and DVD Storage)

	3.5 Measuring Video Quality
	3.5.1 Subjective Quality Measurement
	3.5.1.1 ITUR BT.500
	3.5.2 Objective Quality Measurement

