
1

An Introduction to Video Compression in C/C++

Fore June

Chapter 1

Discrete Cosine Transform (DCT)

6.1 Time, Space and Frequency Domains

Data compression techniques can be classified as lossless or lossy. In lossless compression, we
can reverse the process and recover the exact original data. This technique works by exploiting
and removing redundancy of data and no information is lost in the process. Typically, lossless
compression is used to compress text and binary programs and compression ratios achieved are
usually not very high.

In lossy compression, we throw away some information carried by the data and thus the process
is not reversible. The technique can give us much higher compression ratios. Given a set of data,
what kind of information should we throw away? It turns out that choosing the portion of informa-
tion to throw away is the state-of-the-art of lossy compression. Note that in technical terms, we can
have redundant data but not redundant information. However, we can have irrelevant information
and usually this is the part of the information want to throw away. For example, when we write
a story about a marathon runner, we may usually omit the part that tells the time she sleeps, the
time she gets up and the time she eats without affecting the story. Given an image, we want to
determine which components are not as relevant as other components and discard the less relevant
components. In previous chapters, we discussed that by transforming the representation of an im-
age from RGB to 4:2:0 YCbCr format, which separates the intensity from color components, we
can easily compress an image by a factor of two without much down grading of the image quality.
The underlying principles in this stage of compression is that human eyes are more sensitive to
brightness than to color and in practice, we do not need to retain as much information of the color
components as we need in presenting an image. However, even after this change in format, we
still represent the image in the spatial domain, where a sample value depends on the positon of
the two-dimensional space. That is, it is a function of the coordinates (x, y) of a two-dimensional
plane. Our eyes do not have any crucial discrimination of a point at any special position in space
and thus it is difficult for us to further pick the irrelevant information and throw it away if we
need to. On the other hand, if we could represent the image in the frequency domain, we know
that our eyes are not very sensitive to high frequency components and if we have to get rid of any
information, we would like to get rid of those components first.

It turns out that in nature, any wave can be expressed as a superposition of sine and cosine
waves. In other words, any periodic signals can be decomposed into a series of sine and cosine
waves with frequencies that are integer multiples of a certain frequency. This is the well-known
Fourier Theorem, which is one of the most important discoveries in the history of science and
technology. It is the foundation of many science and engineer applications. Lossy image compres-
sion is one of the many applications that utilize a transform built upon the theorem.

1

2 Discrete Cosine Transform (DCT)

6.2 Discrete Cosine Transform (DCT)

Numerous research has been conducted on transforms for image and video compression. There are
a few methods that are practical and popularly used. For static image compression, the Discrete
Wavelet Transform (DWT) is the most popular method and can yield good results; it has been
incorporated in the JPEG standard. Other popular methods that require less memory to operate
include Karhunen-Loeve Transform (KLT), Singular Value Decomposition (SVD), and Discrete
Cosine Transform (DCT). For video compression, DCT tends to give very good performance
and has been incorporated in the MPEG standard. In this book, DCT will be the only significant
transform that we shall discuss. DCT closely relates to Discrete Fourier Transform (DFT).
Figure 6-1 shows the operation of two dimensional DCT on a block of N ×M pixels.

DCT

IDCT

fij

Fuv

Figure 6-1. DCT and Inverse DCT (IDCT)

In the figure, fij are the pixel values and Fuv are the transformed values. The transform is re-
versible meaning that if we discount the rounding errors occurred in arithmetic calculations, we
can recover the original pixel values by reversing the transformation. The reversed transformation
is known as Inverse DCT or IDCT, which is also shown in Figure 6-1.

The general equation for a 2D DCT of a block of N ×M pixels with values fijs is defined by
the following equation:

Fuv = NuMv

N−1∑
i=0

M−1∑
j=0

fijcos
(2j + 1)vπ

2M
cos

(2i+ 1)uπ
2N

(6.1)

where

Kr =

√

1
K if r = 0√
2
K if r > 0

(6.2)

and K is M or N in (6.1).
The corresponding IDCT is given by the following equation:

fij =
N−1∑
u=0

M−1∑
v=0

NuMvFuvcos
(2j + 1)vπ

2M
cos

(2i+ 1)uπ
2N

(6.3)

In many applications, N = M and equations (6.1) and (6.2) can be expressed in matrix forms.
If f and F denote the matrices (fij) and (Fuv) respectively, equation (6.1) can be rewritten in the
following matrix form:

F = R f RT (6.4)

where RTis the transpose of the transform matrix R. The matrix elements of R are

Rij = Nicos
(2j + 1)iπ

2N
(6.5)

Chapter 6 Discrete Cosine Transform (DCT) 3

where Ni is defined in (6.2). It turns out that the inverse of R is the same as its transpose, i.e.
R−1 = RT. Therefore, the inverse transformation, IDCT can be found by:

f = RT F R (6.6)

Example
Consider N = M = 4. The DCT transform matrix R is a 4 × 4 matrix. Using the fact that cos(π − θ) = −cosθ,
cos(π + θ) = −cosθ and cos(2π + θ) = cosθ, we obtain the following matrix:

R =

0BBBBBBB@

a a a a

b c −b −c

a −a −a a

c −b −b c

1CCCCCCCA
where

a = 1
2

b =
q

1
2
cosπ

8

c =
q

1
2
cos 3π

8

(6.7)

Evaluating the cosines, we have

R =

0BBBBBBB@

0.5 0.5 0.5 0.5

0.653 0.271 −0.271 −0.653

0.5 −0.5 −0.5 0.5

0.271 −0.653 −0.653 0.271

1CCCCCCCA
(6.8)

Sometimes DCT is referred to as Forward DCT (FDCT) in order to distinguish it from Inverse
DCT (IDCT).

6.3 Floating-point Implementation of DCT and IDCT

A direct floating-point implementation of DCT and IDCT of an N ×N block is straight forward and
simple. All we need to do is to use two for-loops to do summations. Program Listing 6-1 shows
the implementation. In the program, the functions dct direct() and idct direct() do the actual work
of DCT, and IDCT respectively; they use floating point (double) in calculations. The functions
dct() and idct() simply cast short values to double and call dct direct() or idct direct() to do the
transformations. In the functions, the values of *(f+i*N+j) and *(F+u*N+v) refer to the values of
f[i][j] and F[u][v], corresponding to fij and Fuv in equations (6.1) and (6.3) respectively; a[u] and
a[v] correspond to Nu and Nv .

Program Listing 6-1 Floating Point Implementation of DCT and IDCT

--
/*

dct_direct.cpp
A straight forward implementation of DCT and IDCT for the purpose
of learning and testing. Floating-point arithmetic is used. Such
an implementation should not be used in practical applications.

Compile: g++ -o dct_direct dct_direct.cpp -lm
Execute: ./dct_direct

*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

4 Floating-point Implementation of DCT and IDCT

using namespace std;
#define PI 3.141592653589

//input: f, N; output: F
short dct_direct(short N, double *f, double *F)
{

double a[32], sum, coef;
short i, j, u, v;

if (N > 32 || N <= 0) {
printf ("\ninappropriate N\n");
return -1;

}
a[0] = sqrt (1.0 / N);
for (i = 1; i < N; ++i) {
a[i] = sqrt (2.0 / N);

}
for (u = 0; u < N; ++u) {
for (v = 0; v < N; ++v) {

sum = 0.0;
for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {
coef = cos((2*i+1)*u*PI/(2*N))*cos((2*j+1)*v*PI/(2*N));
sum += *(f+i*N+j) * coef; //f[i][j] * coef

} //for j

*(F+u*N+v) = a[u] * a[v] * sum;
} //for i

} //for u
} //for v

return 1;
}

//input: N, F; output f
short idct_direct(short N, double *F, double *f)
{

double a[32], sum, coef;
short i, j, u, v;

if (N > 32 || N <= 0) {
printf ("\ninappropriate N\n");
return -1;

}
a[0] = sqrt (1.0 / N);
for (i = 1; i < N; ++i) {

a[i] = sqrt (2.0 / N);
}
for (i = 0; i < N; ++i) {

for (j = 0; j < N; ++j) {
sum = 0.0;
for (u = 0; u < N; ++u) {

for (v = 0; v < N; ++v) {
coef = cos((2*j+1)*v*PI/(2*N))*cos ((2*i+1)*u*PI/(2*N));
sum+=a[u]*a[v]*(*(F+u*N+v))*coef;//a[u]*a[v]*F[u][v]*coef

} //for j

Chapter 6 Discrete Cosine Transform (DCT) 5

*(f+i*N+j) = sum;
} //for i

} //for u
} //for v

return 1;
}

/*
change values from short to double and vice versa.

*/
short dct (short N, short *f, short *F)
{

double tempx[1024], tempy[1024];
int total, i;

if (N > 32 || N <= 0) {
printf ("\ninappropriate N\n");
return -1;

}
total = N * N;
for (i = 0; i < total; ++i) {
tempx[i] = (double) *(f+i);

}
dct_direct (N, tempx, tempy); //DCT operation
for (i = 0; i < total; ++i) {

*(F+i) = (short) (floor (tempy[i]+0.5)); //rounding
}

return 1;
}

/*
change values from short to doulbe, and vice versa.

*/
short idct (short N, short *F, short *f)
{

double tempx[1024], tempy[1024];
int total, i;

if (N > 32 || N <= 0) {
printf ("\ninappropriate N\n");
return -1;

}
total = N * N;
for (i = 0; i < total; ++i) {
tempy[i] = (double) *(F+i);

}
idct_direct (N, tempy, tempx); //IDCT operation
for (i = 0; i < total; ++i) {

*(f+i) = (short) (floor (tempx[i]+0.5)); //rounding
}

return 1;
}

6 Floating-point Implementation of DCT and IDCT

void print_elements (short N, short *f)
{

short i, j;

for (i = 0; i < N; ++i){
printf("\n");
for (j = 0; j < N; ++j) {

printf ("%4d, ", *(f+N*i+j));
}

}
}

int main()
{

short f[8][8], F[8][8];
int i, j, N;
char temp[8][8];
N = 8;

//try some values for testing
for (i = 0; i < N; ++i) {
for (j = 0; j < N; ++j) {

f[i][j] = i + j;
}

}

printf("\nOriginal sample values");
print_elements (N, &f[0][0]);
printf("\n--------------------\n");

dct (N, &f[0][0], &F[0][0]); //performing DCT
printf("\nCoefficients of DCT:");
print_elements (N, &F[0][0]);
printf("\n--------------------\n");

idct (N, &F[0][0], &f[0][0]); //performing IDCT
printf("\nValues recovered by IDCT:");
print_elements (N, &f[0][0]);
printf("\n");

}
--

The implementation shown in Listing 6-1 is inefficient and impractical in image and video com-
pression, which requires numerous operations of DCT and IDCT. Also, it is not a good programming
practice to print out messages inside a function which is designed for other purposes. However, this
program can be used for checking purposes when we later implement DCT and IDCT using more
efficient methods. When the program is executed, it prints the following outputs, where N = 8 has
been considered.

--
Original sample values

0, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 4, 5, 6, 7, 8,
2, 3, 4, 5, 6, 7, 8, 9,

Chapter 6 Discrete Cosine Transform (DCT) 7

3, 4, 5, 6, 7, 8, 9, 10,
4, 5, 6, 7, 8, 9, 10, 11,
5, 6, 7, 8, 9, 10, 11, 12,
6, 7, 8, 9, 10, 11, 12, 13,
7, 8, 9, 10, 11, 12, 13, 14,

Coefficients of DCT:
56, -18, 0, -2, 0, -1, 0, 0,

-18, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,

-2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,

-1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,

Values recovered by IDCT:
0, 1, 2, 3, 4, 5, 6, 7,
1, 2, 3, 4, 5, 6, 7, 8,
2, 3, 4, 5, 6, 7, 8, 9,
3, 4, 5, 6, 7, 8, 9, 10,
4, 5, 6, 7, 8, 9, 10, 11,
5, 6, 7, 8, 9, 10, 11, 12,
6, 7, 8, 9, 10, 11, 12, 13,
7, 8, 9, 10, 11, 12, 13, 14,

--

We can see from the output that there are only a few nonzero coefficient values after DCT and
they are clustered at the upper left corner. So after DCT, it becomes clear to us that the sample block
f actually does not contain as much information as it appears and it is a lot easier to carry out data
compression in the transformed domain.

The value of the DCT coefficient F(0, 0) at position (0, 0) is in general referred to as the DC value
and others are referred to as AC values. This is because F(0, 0) is essentially a scaled average of all
the sample values. We can easily see this if we write down the formula for calculating its value by
setting u = 0, v = 0, and N = M in Equation (6.1). That is,

F00 =
1
N

N−1∑
i=0

N−1∑
j=0

fij (6.9)

where we have used the fact that N0N0 =
√

1
N

√
1
N = 1

N , and cos(0) = 1. (F00/N is the exact
average of all the values.) In Chapter 2, we discussed that the average of a set of values could give
us the most crucial information of the set if we are only allowed to know one single value. Therefore,
the DC value of the DCT coefficients of a block of samples is the most important single value and
we want to retain its value.

6.4 Fast DCT

As DCT is so important in signal processing, a lot of research has been done to speed up its calcu-
lations. One main idea behind speeding up DCT is to break down the summation into stages and in
each stage, intermediate sums of two quantities are formed. The intermediate sums will be used in

8 Fast DCT

later stages to obtain the final sum. In this way, the number of calculations grows with NlogN rather
than N2 as in the case of direct DCT for an N × N sample block. This kind of DCT is referred to
as Fast DCT. In this section, we only discuss the speeding up of Forward DCT. The techniques also
apply to Inverse DCT that we shall discuss later.

If we consider only small values of N in the form of N = 2n, it is not difficult to understand how
the stage break-down is done. For instance, consider N = 8, which is what we need in our video
compression. (In Chapter 5, we discussed that a macroblock consists of 8× 8 sample blocks.) We
can rewrite (6.1) as follows.

Fuv = auav

7∑
i=0

7∑
j=0

fijcos
(2j + 1)vπ

16
cos

(2i+ 1)uπ
16

(6.10)

with

a0 =

√
1
8

=
1

2
√

2

ak =

√
2
8

=
1
2

for k > 0
(6.11)

Equation (6.10) implies that we can express a two dimensional (2D) DCT as two one-dimensional
(1D) DCT. Equation (6.10) can be rewritten as follows.

Fuv = auav

7∑
i=0

F ivcos
(2i+ 1)uπ

16
(6.12)

where

F iv =
7∑
j=0

fijcos
(2j + 1)vπ

16
(6.13)

Aside from a multiplicative constant, Equation (6.13) can be interpreted as a 1D DCT or the DCT of
one row (the i-th row) of samples of an 8 × 8 sample block. For convenience of writing, we shall
suppress writing the index i; it is understood that we consider one row of samples. Also, we let

xj = fij
yv = F iv

(6.14)

Equation (6.13) becomes

yk =
7∑
j=0

xjcos
(2j + 1)kπ

16
, k = 0, 1, ..., 7 (6.15)

If we let θ = π
16 , we can list all the coefficients of yk (k = 0, 1, .. 7) in a table as shown below.

x0 x1 x2 x3 x4 x5 x6 x7

y0 1 1 1 1 1 1 1 1

y1 cos(1θ) cos(3θ) cos(5θ) cos(9θ) cos(11θ) cos(13θ) cos(15θ) cos(15θ)

y2 cos(2θ) cos(6θ) cos(10θ) cos(14θ) cos(18θ) cos(22θ) cos(26θ) cos(30θ)

y3 cos(3θ) cos(9θ) cos(15θ) cos(21θ) cos(27θ) cos(33θ) cos(39θ) cos(45θ)

y4 cos(4θ) cos(12θ) cos(20θ) cos(28θ) cos(36θ) cos(44θ) cos(52θ) cos(60θ)

y5 cos(5θ) cos(15θ) cos(25θ) cos(35θ) cos(45θ) cos(55θ) cos(65θ) cos(75θ)

y6 cos(6θ) cos(18θ) cos(30θ) cos(42θ) cos(54θ) cos(66θ) cos(78θ) cos(90θ)

y7 cos(7θ) cos(21θ) cos(35θ) cos(49θ) cos(63θ) cos(77θ) cos(91θ) cos(105θ)

Table 6-1

Chapter 6 Discrete Cosine Transform (DCT) 9

Since θ = π
16 , we have 16θ = π. We can simplify the above table by making use of some basic

cosine properties such as
cos(π − α) = −cos(α)
cos(2π − α) = cos(α) (6.16)

Using (6.16), we can reduce cos(nθ) with n ≤ 8 to a form of ±cos(kθ) with k ≤ 7. For example,

cos(9θ) = cos(16θ − 7θ) = cos(π − 7θ) = −cos(7θ)
cos(35θ) = cos(32θ + 3θ) = cos(2π + 3θ) = cos(3θ)

Applying these, we can simplify Table 6-1 to Table 6-2 as shown below, where cs represents cosine:

x0 x1 x2 x3 x4 x5 x6 x7

y0 1 1 1 1 1 1 1 1

y1 cs(1θ) cs(3θ) cs(5θ) cs(7θ) −cs(7θ) −cs(5θ) −cs(3θ) −cs(1θ)

y2 cs(2θ) cs(6θ) −cs(6θ) −cs(2θ) −cs(2θ) −cs(6θ) cs(6θ) cs(2θ)

y3 cs(3θ) −cs(7θ) −cs(1θ) −cs(5θ) cs(5θ) cs(1θ) cs(7θ) −cs(3θ)

y4 cs(4θ) −cs(4θ) −cs(4θ) cs(4θ) cs(4θ) −cs(4θ) −cs(4θ) cs(4θ)

y5 cs(5θ) −cs(1θ) cs(7θ) cs(3θ) −cs(3θ) −cs(7θ) cs(1θ) −cs(5θ)

y6 cs(6θ) −cs(2θ) cs(2θ) −cs(6θ) −cs(6θ) cs(2θ) −cs(2θ) cs(6θ)

y7 cs(7θ) −cs(5θ) cs(3θ) −cs(1θ) cs(1θ) −cs(3θ) cs(5θ) −cs(7θ)

Table 6-2

In Table 6-2, each yi is equal to the sum over k of xk times the coefficient at column k and row i.
We observe that the columns possess certain symmetries; besides the first row, whenever cos(kθ)
appears in an i-th column, it also appears in another j-th column when i + j = 7. This implies
that we can always group the i-th and j-th columns together in our summing operations to compute
(xi ± xj)cos(kθ) provided i+ j = 7. For example, we can rewrite y0 and y2 as follows:

y0 = (x0 + x7) + (x1 + x6) + (x2 + x5) + (x3 + x4)
y2 = (x0 + x7)c2 + (x1 + x6)c6 − (x2 + x5)c6 − (x3 + x4)c2

(6.17)

where
ck = cos(kθ)

Once we have computed (xi + xj) with i + j = 7, we can use this intermediate result in the
calculations of both of y0 and y2. Moreover, we can continue this process recursively until we obtain
the final values. For instance, let

x′i = (xi + xj), i+ j = 7
x′j = (xi − xj), i+ j = 7
x′′i = (x′i + x′j), i+ j = 7/2 = 3
x′′j = (x′i − x′j), i+ j = 7/2 = 3

(6.18)

We can rewrite y0 and y2 in (6.17) as follows:

y0 = (x′0 + x′3) + (x′1 + x′2) = (x′′0 + x′′1)
y2 = (x′0 − x′3)c2 + (x′1 − x′2)c6 = x′′3c2 + x′′2c6

(6.19)

We can decompose y4 and y6 in a similar way as y4 only uses c4 and y6 uses only c2 and c6 of the
cosine functions in the calculations. Equations of (6.20) shows the decomposition of y4 and y6:

y4 = (x′0 + x′3)c4 − (x′1 + x′2)c4 = (x′′0 − x′′1)c4
y6 = (x′0 − x′3)c6 + (x′2 − x′1)c2 = x′′3c6 − x′′1c2

(6.20)

10 Fast DCT

The calucation of the other y′ks(y1, y3, y5, and y7) involves four cosine functions (c1, c3, c5 and
c7) and they appear to be more difficult to decompose. It turns out that these cosine functions can be
expressed in terms of each other by making use of some basic cosine properties like those expressed
in (6.21):

cos(α− β) = cos(α)cos(β) + sin(α)sin(β)

8θ =
8π
16

=
π

2
c4 = cos(4θ) = sin(4θ) = cos(

π

4
) = sin(

π

4
) =

1√
2

c1 = cos(1θ) = cos(8θ − 7θ) = cos(
π

2
− 7θ) = sin(7θ)

c3 = cos(3θ) = cos(7θ − 4θ) = cos(7θ)cos(4θ) + sin(7θ)sin(4θ) =
c7 + c1√

2
c5 = cos(5θ) = cos(1θ + 4θ) = cos(1θ)cos(4θ)− sin(1θ)sin(4θ) =

c1 − c7√
2

(6.21)

Making use of the identities of (6.21), we can apply the decomposition steps to all the y′is. For
example, we can express y1 as

y1 = (x0 − x7)c1 + (x1 − x6)c3 + (x2 − x5)c5 + (x3 − x4)c7

= x′7c1 + x′6c3 + x′5c5 + x′4c7

= x′7c1 +
x′6(c1 + c7)√

2
+
x′5(c1 − c7)√

2
+ x′4c7

= [x′7 +
x′6 + x′5√

2
]c1 + [x′4 +

x′6 − x′5√
2

]c7

= [x′7 + x′′6]c1 + [x′4 + x′′5]c7

= x′′′7 c1 + x′′′4 c7

(6.22)

In (6.22), the subscripts in the third and fourth recursive stages are not well-defined but their mean-
ings should be clear. We observe that in the calculations, we often have expressions in the the
following form:

c = (a+ b)

d = (a− b)
(6.23)

The computations of (6.23) can be represented by a diagram shown in Figure 6-2, which is referred
to as a butterfly computation because of its appearance. It is also a simple flow graph.

a o o c

b o o d−1

Figure 6-2. Flow Graph of Butterfly Computation

Chapter 6 Discrete Cosine Transform (DCT) 11

If we include the constants ak in our calculation of yk and let

Ck = ckak =
ck
2

=
cos(θ)

2
k ≥ 1, and

C0 =
1√
2

we arrive at the following flow graph. (Note that a0 = 1
2
√

2
= C4.)

x0 O O O O y0

x1 O O O O y4

x2 O O O O y2

x3 O O O O y6

x4 O O O O O y1

x5 O O O O O y5

x6 O O O O O y3

x7 O O O O O y7

C4

−1
C4

−1
C6

−1 C6

−1
C7

−1
−C0

−1
C3

−1 C0

−1
C3

−1 C7

C0

C0

−C2

C2

−C1

−C5

C5

C1

Figure 6-3. Flow Graph of 8× 8 DCT using Butterfly Computation

We can obtain yk by tracing the paths of getting to it. For example, y2 is given by

y2 = x′′2C6 + x′′3C2

= [x′1 − x′2]C6 + [x′0 − x′3]C2

= [(x1 + x6)− (x2 + x5]C6 + [(x0 + x7)− (x3 + x4)]C2

The following piece of C/C++ code shows how we can compute y′ks from x′ks. The first for-loop
does the butterfly computations (xi±xj), which are the first stage operations of the flow graph shown
in Figure 6-3. It then performs the eight operations of the second stage of Figure 6-3. Next, the code
does the calculations of the upper-half third stage, which is also the final stage of the upper-half flow
graph. The lower-half has a total of four stages; the remaining code carries out the transforms of the
third and fourth stages of the lower-half flow graph of Figure 6-3:

--
for (j = 0; j < 4; j++) { //1st stage transform, see flow-graph

j1 = 7 - j;

12 Integer Arithmetic

x1[j] = x[j] + x[j1];
x1[j1] = x[j] - x[j1];

}
x[0] = x1[0] + x1[3]; //second stage transform
x[1] = x1[1] + x1[2];
x[2] = x1[1] - x1[2];
x[3] = x1[0] - x1[3];
x[4] = x1[4];
x[5] = (x1[6] - x1[5]) * C0;
x[6] = (x1[6] + x1[5]) * C0
x[7] = x1[7];

y[0] = (x[0] + x[1])*C4; //upper-half of 3rd (final) stage,
y[4] = (x[0] - x[1])*C4; // see flow-graph
y[2] = x[2] * C6 + x[3] * C2;
y[6] = x[3] * C6 - x[2] * C2;

x1[4] = x[4] + x[5]; //lower-half of third stage
x1[5] = x[4] - x[5];
x1[6] = x[7] - x[6];
x1[7] = x[7] + x[6];

y[1] = x1[4] * C7 + x1[7] * C1;//lower-half of 4th (final) stage
y[7] = x1[7] * C7 - x1[4] * C1;
y[5] = x1[5] * C3 + x1[6] * C5;
y[3] = x1[6] * C3 - x1[5] * C5;

--

This code works a lot faster than the direct implementation of DCT; most practical video coders use
a similar implementation. However, for the coder to be commercially competitive, we need to go one
step further. We have to use integer-arithmetic, which makes further significant speed improvement
of the calculations.

6.5 Integer Arithmetic

In practice, we use integer arithmetic to implement a Fast DCT. To see how this works, without loss
of generality, let us consider 16-bit integers and consider a simple example with a number x = 2.75.
We cannot express this number as an integer directly, but we can imagine that there is a binary point
at the right side of bit 0 of a 16-bit integer. In this imaginary format, x can be represented as a bit
vector with imaginary digits (i.e. 2.75 = 21 + 2−1 + 2−2):

bit position : 15 9 8 7 6 5 4 3 2 1 0

x = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 . 1 1
(6.24)

In (6.24), the 16-bit integer does not contain the two ‘1’ bits to the right of the binary point, which
is the fractional part of x. To retain the information of the fractional part, we can shift the whole
number left by 8 bits. Shifting a number left by 8 bits is the same as multiplying it by 28(= 256).
After this shift, the binary point will be at the position between bit 8 and bit 7; the number x(= 2.75)

Chapter 6 Discrete Cosine Transform (DCT) 13

becomes an integer x′ as shown below:

bit position : 15 9 8 7 6 5 4 3 2 1 0

x′ = 0 0 0 0 0 0 1 0 . 1 1 0 0 0 0 0 0
(6.25)

The value of x now becomes
x′ = 29 + 27 + 26 = 704

which is the same as 2.75 × 256 = 704. If we now divide x′ by 256, or right-shift it by 8 bits, we
obtain the integer 2; that is, we have truncated the fraction part of 2.75. In many cases, we would
prefer a round operation than a truncate. Rounding 2.75 gives us 3. The rounding result can be
achieved by first adding 0.5 to 2.75 before the truncation. If we express 0.5 in our imaginary format
and left-shift it by 8 bits, we obtain the value 128(= 27). So adding 0.5 to x corresponds to the
operation of adding 27 to x′. This is illustrated in the following equations, where x′′ = x′+0.5×27:

bit position : 15 9 8 7 6 5 4 3 2 1 0

x′ = 0 0 0 0 0 0 1 0 . 1 1 0 0 0 0 0 0

+0.5× 27 = 0 0 0 0 0 0 0 0 . 1 0 0 0 0 0 0 0

x′′ = 0 0 0 0 0 0 1 1 . 0 1 0 0 0 0 0 0

(6.26)

Obviously, when we right-shift x′′ by 8 bits, we obtain our desired value 3. In general, we can
transform real positive numbers to integers by multiplying the real numbers by 2n; rounding effect
is achieved by adding the value 2n−1 to the results before shifting them right n bits. This is true for
positive numbers but will it be also true for negative numbers? Should we still add 0.5 to the negative
number or should we subtract 0.5 from it before the truncation? The following example sheds light
on what we should do.

Most modern-day computers use two’s complement to represent negative numbers. Binary num-
bers that can have negative values are referred to as signed numbers, otherwise they are referred to
as unsigned numbers. In two’s complement representation, if we right-shift an unsigned number
one bit, a 0 is always shifted into the leftmost bit position. However, if we right-shift a negative
signed-number, a 1 is shifted in. For example, consider the following piece of code:

--
int main()
{

char sc = 0x82; //8-bit signed number
unsigned uc = 0x82; //8-bit unsigned number

sc >>= 1; //right-shift one bit
uc >>= 1; //right-shift one bit

printf("\nsigned shift: 0x%x", sc);
printf("\nunsigned shift: 0x%x", uc);

}
--

When executed, the program will produce the following outputs:

signed shift: 0xc1
unsigned shift: 0x41

14 Integer Arithmetic

The outputs show that a 1 has been shifted into sc (signed char) and a 0 has been shifted into uc
(unsigned char). Because of this property, in C/C++ programming, integer-division of a negative
signed-number by 2n is different from right-shifting it by n bits. For example,

−1/2 = 0 but − 1 >> 1 yields − 1

−3/2 = −1 but − 3 >> 1 yields − 2

Now consider the negative signed-number y = −2.75. Its 2s complement representation can be
obtained by complementing all bits of the corresponding positive number (2.75) shown in (6.24)
and adding 1 to the rightmost bit of the complemented number. Thus it has the following binary form.

bit position : 15 9 8 7 6 5 4 3 2 1 0

y = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 . 0 1
(6.27)

When we round -2.75, we would like to obtain a value of -3 rather than -2 as the former is closer to
its real value. Suppose we perform the same operations that we did to positive numbers discussed
above, shifting it left 8 bits, adding 0.5× 27 and then right shifting 8 bits. This situation is illustrated
by following equations where y′′ = y′ + 0.5× 27.

bit position : 15 9 8 7 6 5 4 3 2 1 0

y′ = 1 1 1 1 1 1 0 1 . 0 1 0 0 0 0 0 0

+0.5× 27 = 0 0 0 0 0 0 0 0 . 1 0 0 0 0 0 0 0

y′′ = 1 1 1 1 1 1 0 1 . 1 1 0 0 0 0 0 0

(6.28)

When we right-shift y′′ 8 bits, we obtain the following.

bit position : 15 9 8 7 6 5 4 3 2 1 0

y′′ >> 8 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 . 1 1
(6.29)

In (6.29), y′′ >> 8 has a value of -3 (in 2s complement representation) and is what we want.
Therefore, we conclude that to obtain the rounding effect, we always add 0.5 (= 0.1 in binary) to the
number before truncating (right-shifting) for both positive and negative numbers.

When we add two numbers using integer arithmetic, we must align the binary points of the two
numbers before addition. If the first number has been left-shifted by n bits, the second one must also
be shifted by the same amount. In our implementation of Fast DCT, we use 32-bit integers; all the
coefficients Ci are pre-multiplied by 1024(= 210). After the calculations, we right-shift the integers
by the same number of bits to obtain the final results. The code of the implementation of Fast DCT
is listed below:

Program Listing 6-2 . Integer-arithmetic Implementation of Fast DCT

--
#include <string.h>
#include <stdio.h>
#include <math.h>

#define PI 3.141592653589
const short shift = 10; //10 bits precision: fixed-point arithmetic

Chapter 6 Discrete Cosine Transform (DCT) 15

const short shift1 = 2*shift;//at final stage,values shifted twice
const int fac = 1 << shift; //multiply all constants by 2ˆ10(=1024)
const int delta = 1 << (shift-1);//rounding adjustment ˜ 0.5x2ˆ10
const int delta1=1<<(shift1-1);//final rounding adjustment˜0.5x2ˆ20
const double a = PI / 16.0; //angle theta

//DCT constants; use integer-arithmetic.
const int c0 = (int) (1 / sqrt (2) * fac);
const int c1 = (int) (cos (a) / 2 * fac);
const int c2 = (int) (cos (2*a) / 2 * fac);
const int c3 = (int) (cos (3*a) / 2 * fac);
const int c4 = (int) (cos (4*a) / 2 * fac);
const int c5 = (int) (cos (5*a) / 2 * fac);
const int c6 = (int) (cos (6*a) / 2 * fac);
const int c7 = (int) (cos (7*a) / 2 * fac);

/*
DCT function.
Input: X, array of 8x8, containing data with values in [0, 255].
Ouput: Y, array of 8x8 DCT coefficients.

*/
void dct(int *X, int *Y)
{

int i, j, j1, k;
int x[8], x1[8], m[8][8];

/*
Row transform
i-th row, k-th element

*/
for (i = 0, k = 0; i < 8; i++, k += 8) {

for (j = 0; j < 8; j++)
x[j] = X[k+j]; //data for one row

for (j=0; j < 4; j++){//first stage transform, see flow-graph
j1 = 7 - j;
x1[j] = x[j] + x[j1];
x1[j1] = x[j] - x[j1];

}
x[0] = x1[0] + x1[3]; //second stage transform
x[1] = x1[1] + x1[2];
x[2] = x1[1] - x1[2];
x[3] = x1[0] - x1[3];
x[4] = x1[4]; //after multiplication,add delta for rounding
//shift-right to undo ’x fac’ to line up binary
// points of all x[i]
x[5] = ((x1[6] - x1[5]) * c0 + delta) >> shift;
x[6] = ((x1[6] + x1[5]) * c0 + delta) >> shift;
x[7] = x1[7];

m[i][0] = (x[0] + x[1])*c4;//upper-half of 3rd (final) stage,
m[i][4] = (x[0] - x[1]) * c4; // see flow-graph
m[i][2] = x[2] * c6 + x[3] * c2;
m[i][6] = x[3] * c6 - x[2] * c2;

16 Integer Arithmetic

x1[4] = x[4] + x[5]; //lower-half of 3rd stage
x1[5] = x[4] - x[5];
x1[6] = x[7] - x[6];
x1[7] = x[7] + x[6];

m[i][1] = x1[4] * c7 + x1[7] * c1;//lower-half of 4th stage
m[i][7] = x1[7] * c7 - x1[4] * c1;
m[i][5] = x1[5] * c3 + x1[6] * c5;
m[i][3] = x1[6] * c3 - x1[5] * c5;

} //for i

/*
At this point, coefficients of each row (m[i][j]) has been
multiplied by 2ˆ10. We can undo the multiplication by <<10
here before doing the column transform. However, as we are
using int variables, which are 32-bit to do multiplications,
we can tolerate another multiplication of 2ˆ10. So we delay
our undoing until the end of the vertical transform and we
undo all left-shift operations by shifting the results right
20 bits (i.e. << 2 * 10).

*/
// Column transform
for (i = 0; i < 8; i++) { //eight columns

//consider one column
for (j = 0; j < 4; j++) { //first-stage operation

j1 = 7 - j;
x1[j] = m[j][i] + m[j1][i];
x1[j1] = m[j][i] - m[j1][i];

}
//second-stage operation

x[0] = x1[0] + x1[3];
x[1] = x1[1] + x1[2];
x[2] = x1[1] - x1[2];
x[3] = x1[0] - x1[3];
x[4] = x1[4];
//undo one shift for x[5], x[6] to avoid overflow
x1[5] = (x1[5] + delta) >> shift;
x1[6] = (x1[6] + delta) >> shift;

x[5] = (x1[6] - x1[5]) * c0;
x[6] = (x1[6] + x1[5]) * c0;
x[7] = x1[7];

m[0][i] = (x[0] + x[1])*c4;//upper-half of 3rd (final) stage
m[4][i] = (x[0] - x[1])*c4;// see flow-graph
m[2][i] = (x[2] * c6 + x[3] * c2);
m[6][i] = (x[3] * c6 - x[2] * c2);

x1[4] = x[4] + x[5]; //lower-half of third stage
x1[7] = x[7] + x[6];
x1[5] = x[4] - x[5];
x1[6] = x[7] - x[6];

Chapter 6 Discrete Cosine Transform (DCT) 17

m[1][i] = x1[4] * c7 + x1[7] * c1;//lower-half of 4th stage
m[5][i] = x1[5] * c3 + x1[6] * c5;
m[3][i] = x1[6] * c3 - x1[5] * c5;
m[7][i] = x1[7] * c7 - x1[4] * c1;

} // for i

//we have left-shift (multiplying constants) twice
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {

*Y++ = (m[i][j] + delta1) >> shift1;//round by adding delta
}

}
}
--

In Listing 6-2, constant shift has value 10 and shift1 has value 20 which are used for shifting
values. Constant fac is obtained by left-shift 1 by 10 and thus has a value of 1024. Integer constants
c0, c1, c2, c3, c4, c5, c6, c7 correspond to coefficients C ′ks in (6.23) multiplied by 1024. Constants
delta and delta1 are used for rounding adjustments as explained above. In the second stage transform,
in calculating x[5] and x[6], we have multiplied x1[5] and x1[6] by c0. However, no multiplication
of any ci is involved in other x[i]’s. Therefore, to line up the binary point of all x[i]’s including x[5]
and x[6], we have to right-shift the intermediate results of x[5] and x[6] by 10 bits, i.e.

x1[5] = (x1[5] + delta) >> shift;

x1[6] = (x1[6] + delta) >> shift;
(6.30)

At the end, because we have multiplied the constants ci’s twice in the intermediate calculations, we
must undo the corresponding shifting operations by right-shifting the intermediate results by shift1
(= 20). Shifting an integer 20 bits is equivalent to shifting it 10 bits twice.

The code in Listing 6-2 can be used to do Fast DCT of a practical video compression application.

6.6 Inverse DCT (IDCT) Implementation

Once we have written the code for DCT, the implementation of IDCT becomes easy. We just need to
reverse the steps in the DCT program. In the flow graph shown in Figure 6-3, when we traverse from
left to right, we obtain the DCT; if we traverse from right to left, we obtain the IDCT. To understand
why this is so, lets examine a butterfly computation, where we obtain (c, d) from (a, b). If we reverse
the direction of the butterfly flow-graph, going from right to left, we recover (a, b) from (c, d) by

a = (c+ d)/2

b = (c− d)/2
(6.31)

Figure 6-4 shows the reversed butterfly except that we have suppressed writing the constant 1
2 in

the diagram.

18 Inverse DCT (IDCT) Implementation

a o o c

b o o d
−1

Figure 6-4. Flow Graph of Reversed Butterfly Computation

Basically, (6.23) and (6.31) have the same form. If we had multiplied the right side of (6.23)
by 1√

2
and solved for c, and d to obtain (6.31), then the forms of (6.23) and (6.31) would become

identical; there’s no difference in going forward (from left to right) and going backward (from right
to left) in the flow graph.

Another case shown in the flow graph of Figure 6-3 is of the form

c = aCi − bCj

d = aCj + bCi

(6.32)

where Ck = cos(kθ), and θ = π
16 . (If the “minus” operation occurs in the second rather than the

first equation of (6.32), we can simply interchange the roles of c and d to make it look the same as
(6.32).) It turns out that in (6.32) we always have i+ j = 8. Therefore,

Cj = cos(jθ) = cos(
jπ

16
) = cos(

(8− i)π
16

) = cos(
π

2
− iθ) = sin(iθ) (6.33)

and we can express the equations of (6.32) in a matrix form as shown below.
c

d

 =

cos(iθ)− sin(iθ)

sin(iθ) + cos(iθ)

a

b

 (6.34)

You may now recognize that the equations in (6.34) represent a rotation of iθ on a plane about the
origin, which rotates the point (a, b) to the point (c, d). The inverse of such a transformation is a
rotation of −iθ which will bring the point (c, d) back to (a, b). That is,

a

b

 =

cos(iθ) + sin(iθ)

−sin(iθ) + cos(iθ)

c

d

 (6.35)

where we have applied sin(−iθ) = −sin(iθ) and cos(−iθ) = cos(iθ) in the evaluation. Thus, we
can obtain the inverse of (6.32) by simply changing the sign of Cj . That is, we replace any −Cj by
Cj and the corresponding Cj by −Cj . So the inverse of (6.32) is given by

a = cCi + dCj

d = −cCj + dCi

(6.36)

By doing this substitution for all −C ′js in Figure 6-3, we can obtain the flow graph for IDCT. Corre-
spondingly, in developing the IDCT program, we start with the DCT code, starting from the bottom

Chapter 6 Discrete Cosine Transform (DCT) 19

of the DCT function, and working our way up with the replacing strategy; the resulted code is the
IDCT function. We list the complete program, dct video.cpp that implements both DCT and IDCT
below; they are straightforward implementations of what we have discussed. The functions are ready
for use for video compression.

Program Listing 6-3 DCT and IDCT Integer Implementation

--
/*

dct_video.cpp
An implementation of 8x8 DCT and IDCT for video compression.
32-bit integer-arithmetic is assumed.
For DCT operation:

dct (int *X, int *Y);
X is the input pointing to an 8x8 array of samples; values

must be within [0, 255]
Y is the output pointing to an 8x8 array of DCT coefficients.

For IDCT operation:
idct (int *Y, int *X);
Y is the input pointing to an 8x8 array of DCT coefficients.
X is the output pointing to an 8x8 array of sample values.

compile: g++ -c dct_video.cpp
To use them, include the the following header statements in your
application.

void dct(int *X, int *Y);
void idct(int *Y, int *X);

*/

#include <string.h>
#include <stdio.h>
#include <math.h>

#define PI 3.141592653589
const short shift = 10; //10 bits precision
//at the final stage,values have been shifted twice
const short shift1 = 2 * shift;
const int fac = 1 << shift ; //multiply all constants by 2ˆ10
const int delta = 1 << (shift-1);//for rounding adjustment˜0.5x2ˆ10
const int delta1 = 1 << (shift1-1);//final rounding adjust˜0.5x2ˆ20
const double a = PI / 16.0; //angle theta

//DCT constants; use integer-arithmetic.
const int c0 = (int) (1 / sqrt (2) * fac);
const int c1 = (int) (cos (a) / 2 * fac);
const int c2 = (int) (cos (2*a) / 2 * fac);
const int c3 = (int) (cos (3*a) / 2 * fac);
const int c4 = (int) (cos (4*a) / 2 * fac);
const int c5 = (int) (cos (5*a) / 2 * fac);
const int c6 = (int) (cos (6*a) / 2 * fac);
const int c7 = (int) (cos (7*a) / 2 * fac);

/*
DCT function.
Input: X, array of 8x8, containing data with values in [0, 255].

20 Inverse DCT (IDCT) Implementation

Ouput: Y, array of 8x8 DCT coefficients.

*/
void dct(int *X, int *Y)
{

int i, j, j1, k;
int x[8], x1[8], m[8][8];

/*
Row transform
i-th row, k-th element

*/
for (i = 0, k = 0; i < 8; i++, k += 8) {

for (j = 0; j < 8; j++)
x[j] = X[k+j]; //data for one row

for (j = 0; j < 4; j++) { //first stage transform
j1 = 7 - j;
x1[j] = x[j] + x[j1];
x1[j1] = x[j] - x[j1];

}
x[0] = x1[0] + x1[3]; //second stage transform
x[1] = x1[1] + x1[2];
x[2] = x1[1] - x1[2];
x[3] = x1[0] - x1[3];
x[4] = x1[4]; //after multiplication,add delta for rounding
//shift to line up binary points
x[5] = ((x1[6] - x1[5]) * c0 + delta) >> shift;
x[6] = ((x1[6] + x1[5]) * c0 + delta) >> shift;
x[7] = x1[7];

m[i][0] = (x[0] + x[1])*c4; //upper-half of 3rd (final) stage
m[i][4] = (x[0] - x[1]) * c4;
m[i][2] = x[2] * c6 + x[3] * c2;
m[i][6] = x[3] * c6 - x[2] * c2;

x1[4] = x[4] + x[5]; //lower-half of third stage
x1[5] = x[4] - x[5];
x1[6] = x[7] - x[6];
x1[7] = x[7] + x[6];

m[i][1] = x1[4] * c7 + x1[7] * c1; //lower-half of 4th stage
m[i][7] = x1[7] * c7 - x1[4] * c1;
m[i][5] = x1[5] * c3 + x1[6] * c5;
m[i][3] = x1[6] * c3 - x1[5] * c5;

} //for i

/*
At this point, coefficients of each row (m[i][j]) has
been multiplied by 2ˆ10. We can undo the multiplication
by << 10 here before doing the vertical transform. However,
as we are using int variables, which are 32-bit to do
multiplications, we can tolerate another multiplication of
2ˆ10. So we delay our undoing until the end of the vertical
transform and we undo all left-shift operations by shifting
the results right 20 bits (i.e. << 2 * 10).

Chapter 6 Discrete Cosine Transform (DCT) 21

*/
// Column transform
for (i = 0; i < 8; i++) { //eight columns

//consider one column
for (j = 0; j < 4; j++) { //first-stage operation

j1 = 7 - j;
x1[j] = m[j][i] + m[j1][i];
x1[j1] = m[j][i] - m[j1][i];

}
//second-stage operation

x[0] = x1[0] + x1[3];
x[1] = x1[1] + x1[2];
x[2] = x1[1] - x1[2];
x[3] = x1[0] - x1[3];
x[4] = x1[4];
//undo one shift for x[5], x[6] to avoid overflow
x1[5] = (x1[5] + delta) >> shift;
x1[6] = (x1[6] + delta) >> shift;

x[5] = (x1[6] - x1[5]) * c0;
x[6] = (x1[6] + x1[5]) * c0;
x[7] = x1[7];

m[0][i] = (x[0] + x[1])*c4;//upper-half of 3rd (final) stage,
m[4][i] = (x[0] - x[1])*c4;// see flow-graph
m[2][i] = (x[2] * c6 + x[3] * c2);
m[6][i] = (x[3] * c6 - x[2] * c2);

x1[4] = x[4] + x[5]; //lower-half of third stage
x1[7] = x[7] + x[6];
x1[5] = x[4] - x[5];
x1[6] = x[7] - x[6];

m[1][i] = x1[4] * c7 + x1[7] * c1;//lower-half of 4th stage
m[5][i] = x1[5] * c3 + x1[6] * c5;
m[3][i] = x1[6] * c3 - x1[5] * c5;
m[7][i] = x1[7] * c7 - x1[4] * c1;

} // for i

//we have left-shift (multiplying constants) twice
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {

*Y++ = (m[i][j] + delta1) >> shift1;//round by adding delta
}

}
}

/*
Implementation of idct() is to reverse the operations of dct().
We first do vertical transform and then horizontal;this is easier
for debugging as the operations are just the reverse of those in
dct(); of course, it works just as well if you do the horizontal
transform first. So in this implementation, the first stage of
idct() is the final stage of dct() and the final stage of idct()

22 Inverse DCT (IDCT) Implementation

is the first stage of dct().

*/

void idct(int *Y, int *X)
{

int j1, i, j, k;
int x[8], x1[8], m[8][8], y[8];
k = i = 0;

//column transform
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; j++)

y[j] = Y[i+8*j];

x1[4] = y[1] * c7 - y[7] * c1; //lower-half final stage of dct
x1[7] = y[1] * c1 + y[7] * c7;
x1[6] = y[3] * c3 + y[5] * c5;
x1[5] = -y[3] * c5 + y[5] * c3;

x[4] = (x1[4] + x1[5]); //lower-half of 3rd stage of dct
x[5] = (x1[4] - x1[5]);
x[6] = (x1[7] - x1[6]);
x[7] = (x1[7] + x1[6]);

x1[0]=(y[0] + y[4])*c4;//upper-half of 3rd (final) stage of dct
x1[1] = (y[0] - y[4]) * c4;
x1[2] = y[2] * c6 - y[6] * c2;
x1[3] = y[2] * c2 + y[6] * c6;

x[0] = (x1[0] + x1[3]); //second stage of dct
x[1] = (x1[1] + x1[2]);
x[2] = (x1[1] - x1[2]);
x[3] = (x1[0] - x1[3]);

//x[4], x[7] no change
//after multiplication, add delta for rounding
// shift-right to undo ’x fac’ to line up x[]s
x1[5] = ((x[6] - x[5]) * c0 + delta) >> shift;
x1[6] = ((x[6] + x[5]) * c0 + delta) >> shift;
x[5] = x1[5];
x[6] = x1[6];

for (j = 0; j < 4; j++) { //first stage transform of dct
j1 = 7 - j;
m[j][i] = (x[j] + x[j1]);
m[j1][i] = (x[j] - x[j1]);

}
} //for i

//row transform
for (i = 0; i < 8; i++) {

for (j = 0; j < 8; j++)
y[j] = m[i][j] ; //data for one row

Chapter 6 Discrete Cosine Transform (DCT) 23

x1[4] = y[1] * c7 - y[7] * c1;
x1[7] = y[1] * c1 + y[7] * c7;
x1[6] = y[3] * c3 + y[5] * c5;
x1[5] = -y[3] * c5 + y[5] * c3;

x[4] = (x1[4] + x1[5]); //lower-half of third stage
x[5] = (x1[4] - x1[5]);
x[6] = (x1[7] - x1[6]);
x[7] = (x1[7] + x1[6]);

x1[0] = (y[0] + y[4]) * c4;
x1[1] = (y[0] - y[4]) * c4;
x1[2] = y[2] * c6 - y[6] * c2;
x1[3] = y[2] * c2 + y[6] * c6;

//undo one shift for x[5], x[6] to avoid overflow
x1[5] = (x[5] + delta) >> shift;
x1[6] = (x[6] + delta) >> shift;
x[5] = (x1[6] - x1[5]) * c0;
x[6] = (x1[6] + x1[5]) * c0;
//x[4], x[7] no change

x[0] = (x1[0] + x1[3]); //second stage transform
x[1] = (x1[1] + x1[2]);
x[2] = (x1[1] - x1[2]);
x[3] = (x1[0] - x1[3]);

for (j = 0; j < 4; j++) { //first stage transform
j1 = 7 - j;
m[i][j] = (x[j] + x[j1]);
m[i][j1] = (x[j] - x[j1]);

}
}
//we have left-shift (multiplying constants) twice
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {

*X++ = (m[i][j] + delta1) >> shift1;//round by adding delta
}

}
}
--

We can compile dct video.cpp of Listing 6-3 using the command,

g++ -c dct_video.cpp

which generates the object module dct video.o that can be linked to an application. We provide
test dct.cpp that can be downloaded from the web site of this book for you to test the DCT and
IDCT routines of dct video.cpp. Note that the sample values used in testing must be within the
range [0, 255].

The following command links dct video.o with test dct.o, the object module of test dct.cpp to
generate the executable test dct; the option “-lm” means to link with the standard maths library.

g++ -o test_dct dct_video.o test_dct.cpp -lm

The following is what will be displayed when we execute test dct.

24 Applying DCT and IDCT to YCbCr Macroblocks

--
Original Data:

1, 2, 3, 4, 5, 6, 7, 8,
1, 5, 9, 13, 17, 21, 25, 29,
1, 8, 15, 22, 29, 36, 43, 50,
1, 11, 21, 31, 41, 51, 61, 71,
1, 14, 27, 40, 53, 66, 79, 92,
1, 17, 33, 49, 65, 81, 97, 113,
1, 20, 39, 58, 77, 96, 115, 134,
1, 23, 45, 67, 89, 111, 133, 155,

Data after dct:
330, -210, 0, -22, 0, -6, 0, -2,
-191, 124, 0, 13, 0, 4, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0,
-20, 13, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
-6, 4, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
-1, 1, 0, 1, 0, 0, 0, 0,

Data recovered by idct:

1, 2, 3, 4, 5, 6, 7, 8,
1, 5, 9, 13, 17, 21, 25, 29,
1, 8, 15, 22, 29, 36, 43, 50,
1, 11, 21, 31, 41, 51, 61, 71,
1, 14, 27, 40, 53, 66, 79, 92,
1, 17, 33, 49, 65, 81, 97, 113,
1, 20, 39, 58, 77, 96, 115, 134,
1, 23, 45, 67, 89, 111, 133, 155,
--

6.7 Applying DCT and IDCT to YCbCr Macroblocks

In Chapter 5, we have discussed the down sampling of an RGB image to 4:2:0 YCbCr macroblocks.
A 4:2:0 YCbCr macroblock conists of four 8x8 Y sample blocks , one 8x8 Cb sample block and
one 8x8 Cr sample block. It is natural to apply the Fast DCT with N = 8 discussed above to each of
these sample blocks. In Chapter 5, we developed a test program (“test encode ppm.cpp”) that reads
an RGB image in PPM format, decomposes and converts it to 4:2:0 YCbCr macroblocks, and saves
the YCbCr data in a “.ycc” file. Here, we go one step further. We want to develop a test program
that reads the RGB data from a PPM file, converts them to YCbCr macroblocks, applies DCT to the
sample blocks, and saves the DCT coefficients in a file with extension “.dct”. Our “.dct” file has a
format similar to that of a “.ycc” file; the first 8 bytes consists of the header text “DCT4:2:0”; the next
two bytes contains the image width followed by another two bytes of image height; data start from
the thirteenth byte. The test program can also reverse the process. The reversed process consists
of reading a “.dct” file, applying IDCT to the data to recover the YCbCr macroblocks, converting
YCbCr back to RGB and saving the RGB data in a PPM file.

To accomplish these, we need to add a few more functions in the programs encode.cpp and de-
code.cpp discussed in Chapter 5. Suppose we have put all functions that read and write “.ppm” and
“.ycc” files presented in “test encode ppm.cpp” in the file “ppm-ycc.cpp” and their prototypes in

Chapter 6 Discrete Cosine Transform (DCT) 25

“ppm-ycc.h”. The following functions are added to encode.cpp:

void save one dctblock (int *Y, FILE *fpo);
void save dct yccblocks(YCbCr MACRO *ycbcr macro, FILE *fpo);
void encode dct (RGBImage *image, FILE *fpo);

These functions are shown in Listing 6-4. Their meanings are self-explained by the code.

Program Listing 6-4 Encoding an RGB Frame to DCT Coefficients

--
/*

encode.cpp
Contains functions to convert an RGB frame to YCbCr and from YCbCr
to 16-bit DCT coefficients. It also contains functions to save
the converted data.
Compile: g++ -c encode.cpp

*/
#include <stdio.h>
#include <stdlib.h>
#include "../5/common.h"
#include "../5/rgb_ycc.h"

void dct(int *X, int *Y);
void idct(int *Y, int *X);

void print_dct_block (int Y[])
{

for (int i = 0; i < 64; ++i){
if (i % 8 == 0) printf("\n");
printf("%d,\t", Y[i]);

}
printf("\n-----------------");

}

void save_one_dctblock (int Y[], FILE *fpo)
{

short Ys[64];

for (int i = 0; i < 64; ++i) //change to short for saving
Ys[i] = (short) Y[i];

fwrite (Ys, 2, 64, fpo); //save DCT coefficients of the
// block

}

/*
* Apply DCT to six 8x8 sample blocks of a 4:2:0 YCbCr macroblock

* and save the coefficients in a file pointed by fpo

*/
void save_dct_yccblocks(YCbCr_MACRO *ycbcr_macro, FILE *fpo)
{

short block, i, j, k;
unsigned char *py;

26 Applying DCT and IDCT to YCbCr Macroblocks

int X[64], Y[64]; //for dct transform

//save DCT of Y
for (block = 0; block < 4; block++){//Y has 4 8x8 sample blocks

if (block < 2)
py=(unsigned char *)&ycbcr_macro->Y+8*block;//begin of block

else //points to beginning of block
py = (unsigned char *)&ycbcr_macro->Y+128+8*(block-2);

k = 0;
for (i = 0; i < 8; i++) { //one sample-block
if (i > 0) py += 16; //multiply i by 16(one row)
for (j = 0; j < 8; j++) {

X[k++] = (int) *(py + j);
}

}
dct (X, Y); //DCT transform of 8x8 block
save_one_dctblock (Y, fpo); //save DCT coeffs of 8x8 block

}
k = 0;
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {
X[k] = ycbcr_macro->Cb[k];
k++;

}
}
dct (X, Y); //DCT of Cb 8x8 sample block
save_one_dctblock(Y, fpo);
k = 0;
for (i = 0; i < 8; ++i) {

for (j = 0; j < 8; ++j) {
X[k] = ycbcr_macro->Cr[k];
k++;

}
}
dct (X, Y); //DCT of Cr 8x8 sample block
save_one_dctblock (Y, fpo);

}

/*
* Convert RGB data to YCbCr, then to DCT coeffs and

* save DCT coeffs.

*/
void encode_dct (RGBImage *image, FILE *fpo)
{

short row, col, i, j, r;
RGB *p; //pointer to a pixel
RGB macro16x16[256]; //16x16 macroblock;24-bit RGB pixel
YCbCr_MACRO ycbcr_macro; //macroblock for YCbCr samples
static int nframe = 0;

for (row = 0; row < image->height; row += 16) {
for (col = 0; col < image->width; col += 16) {
//points to beginning of macroblock
p = (RGB *)image->ibuf+(row * image->width + col);
r = 0; //note pointer arithmetic

Chapter 6 Discrete Cosine Transform (DCT) 27

for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j) {
macro16x16[r++] = (RGB) *p++;

}
p += (image->width-16); //next row within macroblock

}
macroblock2ycbcr (macro16x16, &ycbcr_macro);
save_dct_yccblocks(&ycbcr_macro, fpo);

} //for col
} //for row

}
.......
(Functions already presented in Listing 5-2 are omitted here.)
--

In Listing 6-4, the function encode dct() declares p as a pointer variable pointing to an RGB object
(i.e., RGB *p), which contains the red, green, blue values of one pixel for a total of 3 bytes. This
pointer is used to access the pixels of a 16 × 16 macroblock. Since the image width and height are
divisible by 16, the starting position of each macroblock at row row and column col is given by:

macroblock address = imageAddress+ row × imagewidth+ col

The ‘address’ is counted relative to the ‘imageAddress’ in terms of pixels. It is not measured in bytes.
Therefore, when we increment p (i.e. ++p), it automatically advances 3 bytes (or one pixel) and
points to the next pixel.

The corresponding functions we need to add to decode.cpp of Listing 5-2 of Chapter 5 include
the following:

int get one dctblock (int *Y, FILE *fpi);
int get dct yccblocks(YCbCr MACRO *ycbcr macro, FILE *fpi);
int decode dct (RGBImage &image, FILE *fpi);

These functions are shown in Listing 6-5. Again, their meanings are self-explained by the code.

Program Listing 6-5 Decoding DCT Coefficients to an RGB Frame

--
/*

decode.cpp
Contains functions to:

read DCT data from a file,
carries out IDCT to obtain YCbCr macroblocks from

DCT coefficients,
convert YCbCr data to RGB, and
read YCbCr data from a file

Compile: g++ -c decode.cpp

*/
#include <stdio.h>
#include <stdlib.h>
#include "../5/common.h"
#include "../5/rgb_ycc.h" //header developed in Chapter 5

void dct(int *X, int *Y);

28 Applying DCT and IDCT to YCbCr Macroblocks

void idct(int *Y, int *X);

int get_one_dctblock (int Y[], FILE *fpi)
{

short Ys[64];
if (!fread (Ys, 2, 64, fpi))

return 0;
for (int i = 0; i < 64; ++i)
Y[i] = Ys[i];

return 1;
}

/*
* Get DCT coefficients from file, apply IDCT to obtain the

* YCbCr macroblocks.

*/
int get_dct_yccblocks(YCbCr_MACRO *ycbcr_macro, FILE *fpi)
{

short r, row, col, i, j, k, n, block;
short c;
unsigned char *py;
int Y[64], X[64];

n = 0;
//read data from file and put them in four 8x8 Y sample blocks
for (block = 0; block < 4; block++) {
if (!get_one_dctblock(Y, fpi))

return 0;
idct (Y, X);
k = 0;
if (block < 2)

py = (unsigned char *) &ycbcr_macro->Y + 8*block;
else

py = (unsigned char *)&ycbcr_macro->Y + 128 + 8*(block-2);
for (i = 0; i < 8; i++){//one sample-block

if (i > 0)py+=16; //advance py by 16 (1 row of macroblock)
for (j = 0; j < 8; j++) {

*(py + j) = X[k++];
n++;

} //for j
} //for i

} //for block
//now do that for 8x8 Cb block
k = 0;
if (!get_one_dctblock(Y, fpi))
return 0;

idct (Y, X);
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {

ycbcr_macro->Cb[k] = X[k];
k++; n++;

}
}

//now do that for 8x8 Cr block

Chapter 6 Discrete Cosine Transform (DCT) 29

k = 0;
if (!get_one_dctblock(Y, fpi))
return 0;

idct (Y, X);
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j) {

ycbcr_macro->Cr[k] = X[k];
k++; n++;

}
}

return n; //number of bytes read
}

/*
* Decode DCT coeffs to a YCbCr frame and then to RGB.

*/
int decode_dct (RGBImage &image, FILE *fpi)
{

short r, row, col, i, j, k, block;
int n = 0;
RGB macro16x16[256]; //16x16 macroblock; 24-bit RGB pixel
YCbCr_MACRO ycbcr_macro; //macroblock for YCbCr samples
RGB *rgbp; //pointer to an RGB pixel
int fpos = ftell (fpi);
for (row = 0; row < image.height; row += 16) {
for (col = 0; col < image.width; col += 16) {

int m = get_dct_yccblocks(&ycbcr_macro, fpi);
if (m <= 0) { printf("\nout of dct data\n"); return m;}
n += m;
ycbcr2macroblock(&ycbcr_macro, macro16x16);
rgbp = (RGB *) (image.ibuf) + (row * image.width + col);
r = 0;
for (i = 0; i < 16; ++i) {

for (j = 0; j < 16; ++j) {

*rgbp++ = macro16x16[r++];
}
rgbp += (image.width - 16); //next row within macroblock

}
} //for col

} //for row
return n;

}
..............
(Functions presented in Listing 5-2 are omitted here.)
--

Finally, the program test dct ppm.cpp of Listing 6-6 performs the tasks of DCT testing on an
image file. It first reads RGB data from the testing PPM file “beach.ppm” and uses the function
encode dct () to convert the RGB data to 4:2:0 YCbCr macroblocks and then to 16-bit DCT coef-
ficients, saving them in the file “beach.dct”. Secondly, it uses the function decode dct() to read the
DCT data back from the file “beach.dct” and recover the RGB data. The recovered RGB data are
saved in the PPM file “beach2.ppm”. To generate an executable, we may link this file to the other
object files discussed before using the following command:

$g++ -o test_dct_ppm test_dct_ppm.cpp ppm_ycc_dct.o \

30 Applying DCT and IDCT to YCbCr Macroblocks

../5/rgb_ycc.o encode.o decode.o dct_video.o

After executing the program, we can check the recovered data by issuing the command “display
../data/beach2.ppm”. One can observe that the image of “beach2.ppm” is essentially identical to that
of the original file, “beach.ppm”. The images of these two files are shown at the end of this Chapter
(Figure 6-6).

Program Listing 6-6 Testing Integer Implementation of DCT and IDCT Using a PPM Image

--
/*
* test_dct_ppm.cpp

* Program to test integer implementations of DCT, IDCT, and

* RGB-YCbCr conversions using macroblocks. PPM files are used

* for testing. It reads "../data/beach.ppm" RGB data, converts

* them to 4:2:0 YCbCr macroblocks, and then to 16-bit DCT

* coefficients which will be saved in file "../data/beach.dct".

* The program then reads back the DCT coefficients from

* "../data/beach.dct", performs IDCT, converts them to YCbCr

* macroblocks and the to RGB data. The recovered RGB data are

* saved in "../data/beach2.ppm". PPM files can be viewed

* using "display".

* Compile: g++ -o test_dct_ppm test_dct_ppm.cpp ppm_ycc_dct.o \
../5/rgb_ycc.o encode.o decode.o dct_video.o

* Execute: ./test_dct_ppm

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../5/common.h"
#include "ppm_ycc_dct.h"

void encode_dct (RGBImage *image, FILE *fpo);
int decode_dct (RGBImage &image, FILE *fpi);

int main()
{

FILE *fp;
int c;
int isize; //image size

fp = fopen ("../data/beach.ppm", "rb");//PPM file for testing
RGBImage image;

ppm_read_comments (fp); //read comments
char temp[100];
fscanf (fp, "%2s", temp);
temp[3] = 0;
if (strncmp (temp, "P6", 2))

throw ppm_error();
ppm_read_comments (fp);
fscanf (fp, "%d", &image.width);
ppm_read_comments (fp);
fscanf (fp, "%d", &image.height);

Chapter 6 Discrete Cosine Transform (DCT) 31

ppm_read_comments (fp);
int colorlevels;
fscanf (fp, "%d", &colorlevels);
ppm_read_comments (fp);
while ((c = getc (fp)) == ’\n’);//get rid of extra line returns
ungetc (c ,fp);

if (image.width % 16 != 0 || image.height % 16 != 0) {
printf("\nProgram only works for image dimensions divisible

by 16.\n
Use ’convert’ utility to change image dimension.!\n");

return 1;
}

//convert RGB data to YCbCr 4:2:0 and then to DCT coeffs; save
// data in "beach.dct"
isize = image.width * image.height;
//allocate memory to hold RGB data
image.ibuf = (unsigned char *) malloc (3 * isize);
fread (image.ibuf, 3, isize, fp);
fclose (fp);

fp = fopen ("../data/beach.dct", "wb");
write_dct_header (image.width, image.height, fp);
encode_dct (&image, fp); //convert to 16-bit DCT coeffs,

// save data in "beach.dct"
delete image.ibuf; //remove the image buffer
fclose (fp);

//read the DCT data back from "beach.dct" and convert to RGB
fp = fopen ("../data/beach.dct", "rb");
if (read_dct_header (image.width, image.height, fp) == -1){
printf("\nNot DCT File\n");
return 1;

}
isize = image.width * image.height;
image.ibuf = (unsigned char *) malloc (3 * isize);
decode_dct (image, fp);//perform IDCT, convert data back to RGB
fclose (fp);

//now save the decoded data in ppm again
fp = fopen ("../data/beach2.ppm", "wb"); //output PPM file
int ppmh[20]; //PPM header*
make_ppm_header (ppmh, image.width, image.height);
for (int i = 0; i < 15; ++i) //save PPM header
putc (ppmh[i], fp);

save_ppmdata (image, fp); //save RGB data
printf("\nRecovered RGB data saved in ../data/beach2.ppm\n");
fclose (fp);
delete image.ibuf; //deallocate memory

return 0;
--

We may use the command “ls -l ../data/beach*” to list the sizes of the beach files. If you do so,

32 Applying DCT and IDCT to YCbCr Macroblocks

you may see something similar to the following, where the left column shows the file sizes:

73743 ../data/beach.ppm
73743 ../data/beach2.ppm
73740 ../data/beach.dct
36876 ../data/beach.ycc

We see that the file size of the DCT data is twice as large as that of the YCbCr data. This is because
we have saved each DCT coefficient as a 16-bit number but each YCbCr sample value is only 8-
bit. It seems that we have done something that have expanded rather than compressed the image
data. Actually, the DCT is only an intermediate process. We do not really need to save any DCT
coefficients. We do so here only for the purpose of testing and learning DCT. In the next chapter, we
shall discuss what we shall do after the DCT step. At the moment, let us summarize what we have
discussed, the encoding and decoding processes up to this point. The encoding stage consists of the
following steps:

1. Converts RGB data to 4:2:0 YCbCr macroblocks. Each macroblock consists of four 8 × 8
Y sample blocks, one 8 × 8 Cb sample block, and one 8 × 8 Cr sample block. This step
compresses the data by a factor of 2.

2. Applies DCT to each 8x8 sample block which gives an 8×8 array of 16-bit DCT coefficients.
This step expands the data by a factor of 2.

On the other hand, the decoding stage consists of the following steps:

1. Applies IDCT to each 8 × 8 arrary of DCT coefficients to recover an 8 × 8 YCbCr 8-bit
sample block. Reconstruct 4:2:0 YCbCr macroblocks from the sample blocks.

2. Converts YCbCr macroblocks to RGB data.

The encoding steps are shown in Figure 6-5.

R
G

B

Y
Cb

Cr Down
Sampling

Y

Cb

Cr
DCT DCT

Coefficients

Figure 6-5. Encoding of RGB Data

Figure 6-6 Effect of down-sampling and DCT: The Original RGB Image (left) and The Restored
Image (right)

Chapter 6 Discrete Cosine Transform (DCT) 33

	Macroblocks
	5.1 Introduction
	5.2 Implementing RGB and 4:2:0 YCbCr Transformation for Video Frames
	5.3 Testing Implementation Using PPM Image

