
1

An Introduction to Video Compression in C/C++

Fore June

Chapter 1

Huffman Encoding

8.1 Introduction

The 3D run-level tuples discussed in the last chapter can be encoded by an entropy encoder, which
in general yields significant compression. Entropy encoding is a reversible or lossless process;
exact data can be recovered in the decoding process from the encoded data. Arithmetic coding
and Huffman coding are two popular methods of entropy encoding with the former giving slightly
better results and consuming more computing power. This kind of encoding is also referred to
as variable-length coding (VLC) because the codewords representing symbols are of varying
lengths. We shall only discuss the Huffman encoding method here.

The commonly used generalized ASCII code uses 8 bits to represent a character and unicode
uses 16 bits to do so; these are fixed-length codes, which are simple but inefficient in the repre-
sentation. Huffman coding assigns a variable-length codeword to each symbol (or tuple here)
based on the probability of the occurrence of the symbol. Frequently occurring symbols are repre-
sented with short codewords whilst less common symbols are represented with longer codewords;
in this way we have a shorter average codeword length and thus save space to store the codewords,
leading to data compression.

We say that a code has the prefix property and is a prefix code if no codeword is the prefix,
or start of the codeword for another symbol. A code with codewords {1, 01, 00} has the prefix
property; a code consisting of {1, 0, 01, 00} does not, because “0” is a prefix of both “01” and
“00”. A non-prefix code like { 1, 0, 01, 00 } cannot be instantaneously decoded because when we
receive a bitstream such as “001”, we do not know whether it consists of { ‘0’, ‘0’, ‘1’ }, or { ‘0’,
‘01’ } or { ‘00’, ‘1’ }. On the other hand, a prefix code can be instantaneously decoded. That is,
a message can be transmitted as a sequence of concatenated codewords, without any out-of-band
markers to frame the words in the message. The receiver can decode the message unambiguously,
by repeatedly finding and removing prefixes that form valid codewords, which are impossible if
the message is formed by a non-prefix code as shown in the above example. Prefix codes are also
known as prefix-free codes, prefix condition codes, comma-free codes, and instantaneous codes.

Not only that Huffman codes are prefix codes, they are also optimal in the sense that no other
prefix code can yield a shorter average codeword length than a corresponding Huffman code. It
is the foundation of numerous compression applications, including text compression, audio com-
pression, image compression, and video compression. It is a building block of many contemporary
multi-media applications.

Huffman code was developed by David A. Huffman while he was a Ph.D. student at MIT, and
published in the 1952 paper “A Method for the Construction of Minimum-Redundancy Codes.”
Huffman codes are easiest to understand and implement if we use trees to represent them though

1

2 Huffman Codes

the tree concept was not used when Huffman first developed the code. Briefly, Huffman tree is a
binary tree (an ordered 2-ary tree) with a weight associated with each node. Let us first consider
some simple examples to understand its principles.

Consider the following two codes.

Symbol Code 1 Code 2
a 000 000
b 001 11
c 010 01
d 011 001
e 100 10

Code 1 is a fixed-length code with codeword length 3 and Code 2 is a variable-length code. Both
of them have the prefix property (note that a fixed-length code always has the prefix property).
They can be represented by binary trees like those shown in Figure 8-1. Decoding a bitstream is
simply a process of traversing the binary tree; we start from the root of the tree and go left or right
based on whether the current bit examined is 0 or 1 until we reach a leaf, which is associated with
a symbol; we then start from the root again and examine the next bit and so on. For example, Code
2 decodes the string “000100111” uniquely to “aecb”. The average codeword length of a code is
equal to the average depths of of the leaves of the corresponding. It is obvious that Code 2 always
has a shorter average codeword length when compared to Code 1, as the tree for Code 2 has a
shorter average depth of its leaves.

ae bee
ce deee

eee
ee

0 1

0 1 0

0 1 0 1 0

ae dee cee
ee beee

0 1

0 1 0 1

0 1

Figure 8-1. Binary Tree Representations of Code1 (left) and Code 2 (right)

8.2 Huffman Codes

Consider an example that the probabilities of the occurrence of symbols are known as shwon in
the table below. In this case, we can calculate the average lengths L of the codewords of the two
codes. Obviously, Code 1 is a fixed-length code and the average length is 3. For Code 2, we need
to take into account the frequency of occurrence of each symbol:

Code 1 : L = 3 bits
Code 2 : L = 0.35× 2 + 0.20× 2 + 0.20× 3 + 0.15× 3 + 0.10× 3 = 2.45 (bits)

(8.1)

Chapter 8 Huffman Encoding 3

Symbol Frequency Code 1 Code 2
a 0.35 000 00
b 0.20 001 10
c 0.20 010 011
d 0.15 011 010
e 0.10 100 110

Code 2 is a prefix code and has a significantly shorter average codeword length than that of
Code 1. But is Code 2 the best code for the given frequencies? Can we do better than Code 2,
creating a code that has shorter L than Code 2? This question can be answered by constructing
a Huffman tree to obtain a Huffman code for the given symbols and frequencies. We start from a
forest of trees; each tree in the forest has only one single node (which is a root as well as a leaf
); each root consists of the symbol and the weight (probability) of it. In this example, we totally
have five single-noded trees as shown in Figure 8-2:

ae be ce de ee
0.35 0.20 0.20 0.15 0.10

Figure 8-2. A Forest of Single-noded Trees

Next, we merge the two trees whose roots have lowest weights and calculate the sum of the two
weights. We assign the sum as the weight to the root of the merged tree. The resulted forest is
shown in Figure 8-3, where we have merged two pairs of roots that have the lowest weights.

ae be ce de ee
0.35 0.20 0.20 0.15 0.10

e e0.40 0.25

Figure 8-3. Merging Two Pairs of Roots with Lowest Weights

We repeat the above merging process until there is only one tree in the forest. Figure 8-4 and
Figure 8-5 show two more iterations of the process. Note that for clarity of presentation, some
node positions have been rearranged.

4 Huffman Codes

be ce ae de ee
0.20 0.20 0.35 0.15 0.10

e e0.40 0.25

e0.6

Figure 8-4. Merging Two More Roots with Lowest Weights

be ce ae de ee
0.20 0.20 0.35 0.15 0.10

e e0.40 0.25

e0.6

e1.0

Figure 8-5. Merging All Trees Yields a Huffman Tree

As shown in Figure 8-5, the final single tree obtained is the Huffman tree that we need. To
obtain the codeword for a symbol, we traverse the tree, starting from the root, until we arrive at a
leaf, which contains the symbol; in the traversal, we generate a 0 on going left and a 1 on going
right (it works just as well if we generate a 1 on going left and a 0 on right) as shown in Figure 8-
6. The sequence of 1’s and 0’s parsed in the traversal from the root to the symbol is the codeword.
The following table shows the Huffman code obtained from the Huffman tree of Figure 8-6.

Symbol Codeword Length
a 10 2
b 00 2
c 01 2
d 110 3
e 111 3

The average length of the Huffman code is

L = 0.35× 2 + 0.20× 2 + 0.20× 2 + 0.15× 3 + 0.10× 3 = 2.25 (bits) (8.2)

which is shorter than that of Code 2 (2.45 bits) discussed above. Actually, one can prove that

Chapter 8 Huffman Encoding 5

Huffman code is optimal. That is, a Huffman code always gives the shortest average code length
of all prefix codes for a given set of probabilities of occurrences of symbols. (We’ll skip the proof
here.)

Note that the symbols are not limited to alphabets and letters. They can be any quantitative
values or even abstract objects. Note also that a Huffman decoder does not need to know the prob-
ability distribution of the symbols in order to decode them. It only needs to know the Huffman
tree to decode a bit-stream consisting of codewords encoded by a Huffman code. In the decoding
process, we start from the root of the tree and traverse the tree according to the 0’s and 1’s we read
from the bit-stream until we reach a leaf to recover the encoded symbol; we then start from the
root again and read in further bits for traversal to obtain the next symbol and so on. For example,
suppose the following is the output bit-stream resulted from encoding a sequence of symbols using
the Huffman tree of Figure 8-6:

00101110110 (8.3)

Upon decoding, we start from the tree root and first read in ‘0 0’, reaching symbol ‘b’; we then
start from the root again and read in ‘1 0’, reaching symbol ‘a’; next, the bit sequence ‘1 1 1’ gives
symbol ‘e’; next, ‘0 1’ gives ‘c’ and finally ‘1 0’ gives ‘a’. Therefore, the encoded sequence of
symbols of the bit-stream (8.3) is “b a e c a”.

be ce ae de ee
e eee

0 1 0 1

0

1

0

1

Figure 8-6. Traversing the Huffman Tree

8.3 Huffman Tree Properties

A Huffman tree can be conveniently constructed using a priority queue. A priority queue is a
special queue that associates each element with a priority value. A general queue has the property
of “First In First Out (FIFO)”. That is, the first element that enters the queue is the first to be
removed. In other words, the first entered-element is always at the front of the queue which is
the next element to be deleted. This happens in a cashier station of a supermarket; the customer
who arrives first at the cashier is the first one to be served. On the other hand, a priority queue
does not follow the FIFO scenario; it is the element that has the highest priority in the queue that
will be deleted first. This could happen when the president of a big company meets a number

6 Huffman Tree Properties

of visitors; she would first meet the most important visitor before meeting other less important
people. Therefore, the element at the front of a priority queue always has the highest priority and
is the first one to be deleted. In other words, when an element with a priority higher than the
priorities of all the elements currently in the queue enters the queue, it will be moved to the front
of the queue.

In our application, we can set the priority of a node (root of a tree) to be the reciprocal of
its weight. That is, the lower the weight, the higher the priority. As an example, in Figure 8-2,
node e has the highest priority, followed by node d, and node a has the lowest priority. With this
association, a Huffman tree can be constructed by the following steps:

1. Start with a forest consisting of single-node trees; the root of a tree contains a symbol and
its weight, which is the reciprocal of its priority value.

2. Insert the roots (nodes) of all trees of the forest into a priority queue.
3. Delete two nodes from the priority queue; the two deleted nodes always have the least

weights (highest priorities).
4. Merge the deleted nodes to form a new root with combined weights; insert the new root

back to the priority queue.
5. Repeat steps 3 - 4 until the priority queue is empty.

In the above steps, when the priority queue is empty, a single tree is formed and it is the required
Huffman tree. In the process, we assume that a root always links to the rest of the nodes of the
tree.

The priority queue implementation is straightforward and intuitive. However, it is not the most
efficient method. and we shall not use it here. To make more efficient or customized implementa-
tions, it is helpful to learn some properties of a Huffman tree.

Firstly, we have learned that a Huffman tree is optimal. However, it is not unique. Given a set
of frequencies, we can have more than one Huffman tree that yields an optimal average codeword
length; different trees can be constructed by interchanging the assignment of 0 and 1 to the left
and right traversal or by merging roots with equal weights in different orders.

Secondly, all internal nodes (non-leaves) of a Huffman tree always have two children. The
binary tree that represents Code 1 in Figure 8-1 will never occur in a Huffman tree regardless of
the occurrence frequencies of the symbols.

Thirdly, if the weights of the symbols are changing, the Huffman tree needs to be recomputed
dynamically. This can be done by utilizing the Sibling Property, which defines a binary tree to be
a Huffman tree if and only if:

1. all leaf nodes have non-negative weights,
2. all internal nodes have exactly two children,
3. the weight of each parent node is the sum of its childrenś weights, and
4. the nodes are numbered in increasing order by non-decreasing weight so that siblings are

assigned consecutive numbers or rank, and most importantly, their parent node must be
higher in the numbering.

The Sibling Property is usually used in Dynamic Huffman Coding, where we encode a stream
of symbols on the fly and the symbol statistics changes as we read in more and more symbols.

Finally, we shall prove a lemma concerning binary trees to help us simplify the implementation
of a Huffman tree when we use an array to implement it. Consider a binary tree where

n0 = number of leaves (nodes of degree 0)
n1 = number of nodes of degree 1 (nodes having one child)
n2 = number of nodes of degree 2 (nodes having two children)

Chapter 8 Huffman Encoding 7

Lemma:

For a non-empty binary tree,

n0 = n2 + 1 (8.4)

Proof:

The total number of nodes in the tree is
n = n0 + n1 + n2 (8.5)

Except the root, a node always has a branch leading to it. Thus the total number of branches is
nB = n− 1 (8.6)

But all branches stem from nodes of degree 1 or 2, so
nB = n1 + 2× n2 (8.7)

Combining (8.6) and (8.7), we have
n− 1 = n1 + 2× n2 (8.8)

yielding
n0 + n1 + n2 − 1 = n1 + 2× n2 (8.9)

Simplifying (8.9), we obtain
n0 = n2 + 1

which is the result we want to prove.

From Huffman tree properties discussed above, we know that a Huffman tree does not have any
node of degree 1 (i.e. n1 = 0) and thus the number of internal nodes is equal to n2. Also, the num-
ber of symbols is equal to the number of leaves (n0) in the tree. Therefore, if we have n symbols,
we know from the Lemma that the corresponding Huffman tree will have n2 = n0 − 1 = n − 1
internal nodes. To store a Huffman tree, we need an entry for each of the left and right child
pointers and an entry for each symbol. The total number of entries NT in the table that holds the
Huffman Tree is equal to the number of pointers plus the number of symbols; this is given by

NT = 2× (n− 1) + n = 3× n− 2 (8.10)

For instance, consider a Huffman tree consisting of five symbols: a, b, c, d, e as shown in Figure
8-7.

8 Huffman Tree Properties

ce debe 3e2e eeae 1e0e
0

1

0
1

0
1

0
1

Figure 8-7. A Huffman Tree Consisting of Five Symbols

The following table shows the corresponding Huffman code of Figure 8-7.

Symbol Codeword
a 0
b 100
c 1010
d 1011
e 11

In this example, the size of the table NT that implements the Huffman tree is

NT = 3× n− 2 = 3× 5− 2 = 13 (8.11)

The Huffman tree is represented by the following table (Table 8-1), where traversing left gives a
0, and traversing right gives a 1 and NT = 13. Note that in the table, the root is pointing at the
highest table location (NT − 1) and when traversing the tree we move from the top of the table
down to a location that contains a symbol. When we reach a location whose index is smaller than
NT , we know that we have reached a terminal node (leaf) containing a symbol.

Chapter 8 Huffman Encoding 9

Table 8-1

Table Index Table Content Comments
12 0 left child of node 0 (root)
11 10 right child of node 0
10 8 left child of node 1
9 4 right child of node 1
8 1 left child of node 2
7 6 right child of node 2
6 2 left child of node 3
5 3 right child of node 3
4 ’e’ symbol at leaf
3 ’d’ symbol at leaf
2 ’c’ symbol at leaf
1 ’b’ symbol at leaf
0 ’a’ symbol at leaf

The following piece of C-like pseudo code shows how we traverse the table to obtain the sym-
bols; in the code, htree[] is the table containing the Huffman tree:

loc = 3 * N - 3; //start from root, N = # of symbols
do {

loc0 = loc; //in is data pointer pointing to
// encoded data

if (read_one_bit(in) == 0) //a 0, go left
loc = htree[loc0];

else
loc = htree[loc0+1]; //a 1, go right

} while (loc >= N); //traverse until reach leaf
return htree[loc]; //return symbol

Table 8-1 can be simplified if we assert that the number of symbols n is smaller than a certain
value and we associate each symbol with a value in the range 0 to n− 1. For example, if we assert
n ≤ 128, which actually applies to many video compression applications, then

1. each pointer can be represented by a byte, with a left child denoted by the upper byte of a
16-bit word and right child by the lower byte,

2. table locations signify symbol values and do not need extra entries to hold the symbols, and
3. table size NT is reduced to n− 1.

The above Huffman tree example where the number of symbols is 5 can now be represented by
a table with size of 5− 1 = 4 as shown below.

Table 8-2

Table Index (Symbol) Left Child Right Child Comments
3 (8) 0 (a) 7 left, right children of node 0 (root)
2 (7) 6 4 (e) left, right children of node 1
1 (6) 1 (b) 5 left, right children of node 2
0 (5) 2 (c) 3 (d) left, right children of node 3

10 Pre-calculated Huffman-based Tree Coding

Table 8-2 only has 4 entries while Table 8-1 has 13 entries. The symbols are represented by the
table indices with 0 representing ‘a’, 1 representing ‘b’ and so on. To resolve the case if a table
entry holds a pointer or an actual symbol value, we’ve added the value NT to all table indices
before saving them as pointers. Therefore, in a table entry, if the pointer value is smaller than NT ,
we know that it is a terminal node (symbol). The following piece of code shows how to decode
such a table that represents a Huffman tree; a left mask and right mask are used to extract the
correct pointer value.

//N = # of symbols
left_mask = 0xFF00; //to extract upper byte(left child)
right_mask = 0x00FF; //to extract lower byte(right child)
loc = (N - 1) + N; //start from root; add offset N to

// distinguish pointers from symbols
do {

loc0 = loc - N; //loc0 is real table location
if (read_one_bit(in) == 0){ //a 0, go left

loc = (htree[loc0] & left_mask) >> 8;
} else{

loc = htree[loc0] & right_mask;
}
} while (loc >= N); //traverse until reaches leaf
return loc; //symbol value = loc

8.4 Pre-calculated Huffman-based Tree Coding

The Huffman coding process has a disadvantage that the statistics of the occurrence of the symbols
must be known ahead of the encoding process. Though we do not need to transmit the probability
table to the decoder, we do need it before we can do any encoding. The probability table for a large
video cannot be calculated until after the video data have been processed which may introduce un-
acceptable delay into the encoding process. Because of these, practical video coding standards
define sets of codewords based on the probability distributions of generic video data. The fol-
lowing example is a pre-calculated Huffman table taken from MPEG-4 Visual (Simple Profile),
which uses 3D run-level coding discussed before to encode quantized coefficients. A total of 102
specific combinations of (run, level, last) have variable-length codewords assigned to them and
part of these are shown in Table 8-3. Each codeword can be up to 13 bits long and the last bit is
the sign bit ‘s’, which indicates if the decoded coefficient is positive (0) or negative (1). Any
(run, level, last) combination that is not listed in the table is coded using an escape sequence; a
special ESCAPE code of 0000011 is first transmitted followed by a 13-bit fixed-length codeword
describing the values of run, level, and last. A valid codeword cannot contain more than eight con-
secutive zeros. Therefore, a sequence consisting of eight or more consecutive zeros, “00000000...”
indicates an error in the encoded bitstream or possibly a start code, which might contain a long
sequence of zeros. We shall use Table 8-3 in our entropy-encoding stage shown in Figure 7-1. The
full implementation of the Huffman encoding and decoding for our video codec is discussed in the
next section.

Table 8-3

Chapter 8 Huffman Encoding 11

Run Level Last Code
0 1 0 10s
1 1 0 110s
2 1 0 1110s
0 2 0 1111s
0 1 1 0111s
3 1 0 01101s
4 1 0 01100s
5 1 0 01011s
0 3 0 010101s
1 2 0 010100s
6 1 0 010011s
7 1 0 010010s
8 1 0 010001s
9 1 0 010000s
1 1 1 001111s
2 1 1 001110s
3 1 1 001101s
4 1 1 001100s
0 4 0 0010111s
10 1 0 0010110s
11 1 0 0010101s
12 1 0 0010100s
5 1 1 0010011s
6 1 1 0010010s
7 1 1 0010001s
8 1 1 0010000s

ESCAPE 0000011s
..

8.5 Huffman Coding Implementation

Because Huffman coding involve reading and writing one bit at a time, we need to first develop
some functions that can process an arbitrary number of bits of a file. We provide the program “fbi-
tios.cpp” along with its header file “fbitios.h” that has this capability. The files can be downloaded
from this book’s web site at http://www.forejune.com/vcompress. We do not intend to discuss the
details of this program as it does not directly relate to video compression. All we need to know is
how to use it, which is straightforward. The following are the prototypes of the functions that have
been grouped to a class that does the job that processes files on a bit-basis.

class BitFileIO{
public:

BitFileIO (char *argv_in, char *argv_out); //constructors
BitFileIO :: BitFileIO(char *argv_out, int in_out);
int inputBit(); //input one bit from file
void outputBit(int bit); //output one bit to file
long inputBits(int n); //input n bits from file
void outputBits(unsigned long data, int n);//send n bits to file
void closeOutput(); //close_output
void closeInput(); //close input

};

The constructor BitFileIO (char *argv out, int in out) opens the file specified by argv out for in-
put or output depending on the value of in out. If in out is 1, the file is opened for input, otherwise

12

it is for output. The main purpose of the Huffman code here is to encode the run-level codewords
of the DCT coefficients after forward quantization and reordering. Recall that we have defined a
class to represent a 3D run-level codeword:

class Run3D {
public:
unsigned char run;
short level;
char last;

};

Each Run3D object represents a run-level codeword, and the Huffman code is used to encode
these codewords. We define a class called RunHuff that will help encode and decode run-level
codewords with a Huffman code. This class “has-a” Run3D class. As you’ll see, we’ll insert Run-
Huff objects into a set, which involves the ordering of nodes. Sets and bags are data structures
that are useful in problems in which multiple collections naturally occur. A set is an unordered
collection of elements in which each element is unique like the figure below, which shows a set of
3D run-level codewords.

(1, 1, 0)
(3, 2, 0)

(6, 1, 0)
(1, 1, 1)(0, 1, 0)

(1, 1, 0)
(2, 1, 0)

(3, -1, 0)

(4, 2, 0)(1, 2, 1)

(0, 3, 0)(0, 4, 0)

(1, 5, 0)

On the other hand, a bag can have duplicate elements. Actually, the concept of a set underlies
much of mathematics and is as well an integral part of many computing algorithms. The fun-
damental operations of a set include adding and removing elements, testing for inclusion of an
element, and forming unions, intersections and differences of other sets.

Theoretically, a set is a collection of unordered elements; there is no key associated with each
element and thus we cannot order the elements in a set. However, the people who wrote the STL
C++ library have modified (or wrongly interpreted) the definition of a set and allow an element
associate with a key. Therefore, the elements in an STL C++ set can be ordered. The modified set
behaves more like a map. Maps and multimaps are data structures that are useful in problems in
which multiple collections naturally occur.

A map, sometimes also referred to as a dictionary or a table is an associative container where
records (data) are specified by key values. It is an indexed collection; the key can be used to
generate an index to access the corresponding record. A map can be considered as a collection of
associations of key and value pairs. The key is used to find the value as shown below:

key1 → value1

key2 → value2

key3 → value3

....
keyn → valuen

Chapter 8 Huffman Encoding 13

For example, we can use the telephone number as the key to lookup the information of a person.
The keys in a map must be ordered and unique. A multimap is similar to a map except that a
multimap permits multiple entries to be accessed using the same key value. (i.e. The keys in a
multimap do not need to be unique.)

To utilize an STL C++ set (which behaves like a map) properly, we have to define the com-
parison operator “<” so that RunHuff objects (nodes) can be ordered. In this case, we order
the objects using the values of (run, level, last) of the Run3D objects. We first compare the runs
of the two objects, whichever is smaller determines the smaller RunHuff object. If the runs are
equal, we compare levels and so on. The data member index will point to the table location where
the run-level codeword will be saved. Note that in the STL C++ set data abstraction, the equality
testing operator (operator ==) is not used to test objects for equality. Instead, two objects X and
Y are considered to be equal when “X < Y ” and “Y < X” are both false. Each element in a set
is unique. If one tries to insert an element which is already in the set, the “insert” operation will
be ignored. The class RunHuff is defined below.

Program Listing 8-1: RunHuff Class

--
class RunHuff {
public:

run3D r;
unsigned int codeword;
char hlen; //length of the Huffman codeword
short index; //table index where codeword saved
RunHuff() {} //constructors
RunHuff (run3D a, unsigned c, char len, short idx)
{
r = a, codeword = c, hlen = len; index = idx;

}
//’<’ operator is to order run-level tuples so that
// they can be saved in a binary tree (set)
friend bool operator < (RunHuff left, RunHuff right) {
if (left.r.run < right.r.run)

return true;
if (left.r.run > right.r.run)

return false;
//runs equal
if (left.r.level < right.r.level)

return true;
if (left.r.level > right.r.level)

return false;
//both runs and levels equal
if (left.r.last > right.r.last)

return true;
return false; //so, left object is not smaller than the right

}
};
--

We assume that a pre-calculated Huffman Table like the one shown in Table 8-3 is provided.
Listing 8-2 presents the class Hcodec that makes use of a pre-calculated Huffman Table to build
the encoder and the decoder. We declare a variable htable to be a map to collect RunHuff objects,
each of which contains a 3D run-level tuple and the corresponding Huffman codeword (Table 8-2).

14

Program Listing 8-2: Hcodec class for Huffman Coding-Decoding

--
class Hcodec
{
private:

const static int NSymbols = 256; //maximum symbols allowed
const static short ESC = 127; //Escape run
const static short ESC_HUF_CODE = 0x60; //Escape code
const static short EOS = 126; //End of Stream ’symbol’ (run)
const static short EOS_HUF_CODE = 0x0a; //End of Stream ’symbol’
bool tableNotBuilt;
set<RunHuff> htable;

public:
//default constructor
Hcodec();
//use a set (htable) to collect all pre-calculated run-level
// and Huffman codewords
void build_htable ();
void escape_encode (BitFileIO *outputs, Run3D &r);
void huff_encode (Run3D runs[], BitFileIO *outputs);
//Encode End of Stream symbol
void huff_encode_EOS (BitFileIO *outputs);
short huff_decode(BitFileIO *inputs, Dtables &d, Run3D runs[]);

};
--

The function build htable() of the class Hcodec has all codewords and run-level tuples hard-
coded in the code and saved in variables hcode, runs, levels, and last respectively. The function
collects all these pre-calculated run-level tuples and Huffman codewords and saves them in the set
htable. We can conveniently do this using the C++ Standard Template Library (STL) set. We use
the member function insert() of the set class to insert all RunHuff objects into the set as shown be-
low. (As a matter of fact, the STL set class is implemented using a balanced binary tree structure,
which gives efficient search and insert operations. This is why we need to define a comparison
operator in htable in order to use the STL set since a binary tree is fully ordered.) In the function,
the special run value 127 is used to represent the ESC (escape) symbol. Listing 8-3 shows the
code of this function:

Program Listing 8-3: Function build htable() of Class Hcodec

--
//htable is a set of RunHuff objects
void Hcodec::build_htable() {

//N = number of pre-calculated codewords with positive levels
// In practice, N should be larger than 100
short i, j, k, N = 11;
//lengths of Huffman codewords (not including sign-bit)
char hlen[] = { 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7 };
//Huffman codewords, 0x60 for ESC, 0x3a for EOS;
// a codeword should NEVER be a prefix of another
unsigned short hcode[] = {0x01,0x3,0x7,0xf,0xe, 0x16, 0x6, 0x1a,

0x2a, EOS_HUF_CODE, ESC_HUF_CODE};
//data of 3D run-level tuples (codewords)
unsigned char runs[] = {0, 1, 2, 0, 0, 3, 4, 5, 0, EOS, ESC};

Chapter 8 Huffman Encoding 15

//Note: don’t set Escape level to 0, otherwise leads to duplicate key
short levels[] = {1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1};
char lasts[] = {0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 };
Run3D r; //a 3D run-level codeword (tuple)
RunHuff rf[128]; //table containing RunHuff objects
//inserting RunHuff objects into rf[]
k = 0; j = 0;
for (i = 0; i < N; i++) {

r.run = runs[i];
r.level = levels[i];
r.last = lasts[i];
//construct a RunHuff object, positive level, so sign=0
rf[k++] = RunHuff (r, hcode[i] << 1, hlen[i], j++);
//do the same thing for negative level, sign = 1
r.level = (short) -r.level;
rf[k++] = RunHuff (r, (short)((hcode[i]<<1) | 1), hlen[i], j++);

}
k = 2 * N; //insert all 2N RunHuff objects into htable
for (i = 0; i < k; ++i)

htable.insert (rf[i]);
tableNotBuilt = false;

}
--

After we have collected all the pre-calculated run-level Huffman codewords in the set htable,
the encoding of 3D run-levels tuples becomes simple. To encode a run-level codeword, all we need
to do is to lookup the set htable; if the run-level codeword is in the set, we output the Huffman
codeword along with the sign-bit; if it is not in the set, we “escape” and output the run-level
codeword “directly”.

Suppose the array runs[] contains all the run-level codewords of a macroblock; the following
piece of code shows how to encode them using the pre-calculated Huffman codewords saved in
htable. In the code, we define an iterator itr to traverse htable. If it finds the run-level tuple in
htable, it outputs the Huffman codeword and the sign-bit, otherwise it escape-encodes the tuple
by first outputting the ESCAPE code followed by a fixed-length codeword for the tuple. (In C++,
an iterator is an object that can access members of an array or a container class. It has the abil-
ity to traverse the elements in a certain range using certain operators such as increment (++) and
dereference (*). Very often, it is used in a manner similar to pointers.). The following function of
Listing 8-4, huff encode() does the job:

Program Listing 8-4: Function huff encode() of Class Hcodec

--
void Hcodec::huff_encode (Run3D runs[], BitFileIO *outputs)
{

short i, j, k;
set<RunHuff>::iterator itr; //iterator to traverse htable

if (tableNotBuilt)
build_htable();

i = 0; k = 0;
while (i < 64) { //a macroblock has at most 64 samples
RunHuff rf (runs[k], 0, 0, 0); //construct a RunHuff object;

// only runs[k] is relevant
if ((itr = htable.find (rf)) != htable.end()) //found

16

outputs->outputBits (itr->codeword, itr->hlen + 1);
else //not found

escape_encode(outputs, rf.r);//need to ’escape encode’ 3D tuple
if (runs[k].last) break; //end of run-level codewords
i += (runs[k].run + 1); //for handling the special case of whole

// block of run being 0
k++;

}
}
--

To encode a run-level tuple using the ESC symbol, we first check if the level is negative. If it is
negative, we output a ‘1’ bit otherwise we output a ‘0’ bit. We then send the special code for the
ESC symbol followed by the binary numbers representing the values of run, level and last. The
following piece of code shows how to do this precisely.

void Hcodec::escape_encode (BitFileIO *outputs, Run3D &r) {
if (r.level < 0) { //value of level negative

outputs->outputBit (1); //output sign-bit first
r.level = -r.level; //change level to positive

} else
outputs->outputBit (0); //value of level negative

outputs->outputBits(ESC_HUF_CODE, 7); //ESCAPE code
if (r.run == 64) r.run = 63; //r.level differentiates

// whether last element nonzero
outputs->outputBits (r.run, 6); //6 bits for run value
outputs->outputBits (r.level, 8); //8 bits for level value
outputs->outputBit (r.last); //1 bit for last value

}

The functions huff encode() and escape encode() encode the 3D run-level tuples of a mac-
roblock. Also, at the end of the encoding process, we need to encode a special symbol ‘End of
Stream’ (EOS) to indicate that there are no more encoding data. When the decoder sees the symbol
EOS, it knows that the decoding process is done.

In the encoding process, the Huffman tree is not needed. However, to decode the encoded bit-
stream, we have to use the Huffman tree to recover the ‘symbols’ (run-level tuples). We can
easily construct the Huffman tree in the form of a table from the set htable. Note that here we
build the Huffman tree from pre-calculated codewords, not from symbol weights as people nor-
mally do. Therefore, the process is a lot simpler as Huffman codewords have been provided. The
following function build huff tree() builds the Huffman tree from htable and saves it in the table
(array) huf tree[] of data type short. An entry of huf tree[] holds a node’s pointer to a child or an
index (‘symbol’) if the node is a leaf; the index points to an entry of another table,run table[],
which contains the actual run-level tuple (see Table 8-2). For convenience of programming, we
put huf tree[] and run table[] in a public class (i.e. a struct) called Dtables. (The ‘D’ stands for
‘Decoding’.) Listing 8-5 shows the class Dtables and the function build huff tree().

Program Listing 8-5: Constructing Huffman Tree

--
class Dtables {
public:

short huf_tree[1024]; //table containing Huffman Tree
Run3D run_table[512]; //table containing run-level codewords

};

Chapter 8 Huffman Encoding 17

void Hcodec::build_huff_tree (Dtables &d)
{

set<RunHuff>::iterator itr; //iterator to traverse set htable

short i, j, n0, free_slot, loc, loc0, root, ntotal;
unsigned int mask, hcode;

n0 = NSymbols; //number of symbols (# of leaves in tree)
ntotal = 2 * n0 - 1; //Huffman tree has n0-1 internal nodes
root = 3 * n0 - 3; //location of root with offset n0 added
free_slot = root - 2; //next free table entry for filing in

// with a pointer or an index
for (i = 0; i < ntotal; ++i) //initialize the table

d.huf_tree[i] = -1; //all entries empty
for (itr = htable.begin(); itr != htable.end(); ++itr) {

if (itr->r.level < 0) continue; //only save positive levels
//save run-level codeword;divide by 2 as only postive levels saved
d.run_table[itr->index/2]=itr->r;
loc = root; //always start from root
mask = 0x01; //for examining bits of Huffman codeword
hcode = itr->codeword >> 1; //the rightmost bit is sign-bit
for (i = 0; i < itr->hlen; ++i){ //traverse the Huffman codeword

loc0 = loc - n0; //everything shifted by offset n0

if (i == (itr->hlen - 1)){ //last bit, should point to leaf
if ((mask & hcode) == 0) //a 0, save it at ’left’ leaf

d.huf_tree[loc0] = itr->index/2;
else //a 1, save it at ’right’ leaf

d.huf_tree[loc0-1] = itr->index/2;
continue; //get out of for i for loop,next codeword

}
if ((mask & hcode) == 0){ //a 0 (go left)
if (d.huf_tree[loc0] == -1){ //slot empty

d.huf_tree[loc0]=free_slot; //point to left new child
free_slot -= 2; //next free table entry

} //else : already has left child
loc = d.huf_tree[loc0]; //follow the left child

} else { //a 1 (go right)
if (d.huf_tree[loc0-1]== -1){ //slot empty

d.huf_tree[loc0-1]=free_slot;//point to right new child
free_slot -= 2;

} //else: already has right child
loc = d.huf_tree[loc0-1]; //follow the right child

}
mask <<= 1; //consider next bit

} //for i
} //for itr

}
--

After we have built the Huffman tree, decoding becomes simple. We read in a bitstream and
traverse the tree starting from the root. If the bit read is a 0, we traverse left, otherwise we traverse
right until we reach a leaf where we recover a symbol. If the symbol is an ESCAPE code, we need
to further read in a fixed-number of bits to determine the ‘symbol’ (the run-level tuple). Then
we read in another bit and start the tree-traversal from the root again. The details are shown in the

18

function huff decode() listed below.

Program Listing 8-6: Huffman Decoder

--
short Hcodec::huff_decode(BitFileIO *inputs, Dtables &d, Run3D runs[])
{

short n0, loc, loc0, root, k;
char c, sign;
bool done = false;
Run3D r;

n0 = NSymbols; //number of symbols
root = 3 * n0 - 3; //points to root of tree
k = 0;
while (!done) {
loc = root; //starts from root
sign = inputs->inputBit(); //sign-bit
do {

loc0 = loc - n0;
c = inputs->inputBit(); //read one bit
if (c < 0) {done = true; break;} //no more data, done
if (c == 0) //a 0, go left

loc = d.huf_tree[loc0];
else //a 1, go right

loc = d.huf_tree[loc0-1];
} while (loc >= n0); //traverse until reaches leaf
r = d.run_table[loc];
if (r.run == ESC) { //ESCAPE code, read actual run-level tuple

r.run = inputs->inputBits (6); //read 6 bits for run
r.level = inputs->inputBits (8); //read 8 bits for level
r.last = inputs->inputBit(); //read 1 bit for last
if (sign) //if sign is 1, level should be negative
r.level = -r.level;

} else { //not ESCAPE code
if (sign) //1 => negative
r.level = -r.level;

}
if ((r.run == 63) && (r.level == 0)) r.run = 64; //whole block 0
runs[k++] = r; //save tuple in table runs[]
if (r.last) //end of macroblock
break;

} //while
if (done) return -1; //if (done) => no more data
else return 1;

}
--

Putting all these together, we provide two driver programs,

test_huf_encode.cpp, and
test_huf_decode.cpp

for you to do the testing of the concepts discussed above. (The programs can be downloaded from
the web site of this book, http://www.forejune.com/vcompress/.) A Makefile is provided for you
to create the executables test huf encode and test huf decode. You may use the command,

Chapter 8 Huffman Encoding 19

$test_huf_encode ../data/beach.dct ../data/beach.huf

to encode the DCT coefficients of the file “beach.dct” and save the Huffman codeword bitstream
in “beach.huf”. The command

$test_huf_decode ../data/beach.huf t.dec

decodes the Huffman codeword bitstream saved in “beach.huf” and saves the decoded DCT coef-
ficients in the file “t.dec”. The original data file “beach.dct” and recovered data file “t.dec” are not
the same as quantization and rounding errors have occurred in the process.

	Quantization and Run-level Encoding
	7.1 Introduction
	7.2 Quantization
	7.2.1 Scalar Quantization
	7.2.2 Vector Quantization
	7.2.3 MPEG-4 Quantization

	7.3 Reordering
	7.4 Run-Level Encoding

